Current auto-tuning frameworks struggle with tuning computer systems configurations due to their large parameter space, complex interdependencies, and high evaluation cost. Utilizing probabilistic models, Structured Bayesian Optimization (SBO) has recently overcome these difficulties. SBO decomposes the parameter space by utilizing contextual information provided by system experts leading to fast convergence. However, the complexity of building probabilistic models has hindered its wider adoption. We propose BoAnon, a SBO framework that learns the system structure from its logs. BoAnon provides an API enabling experts to encode knowledge of the system as performance models or components dependency. BoAnon takes in the learned structure and transforms it into a probabilistic graph model. Then it applies the expert-provided knowledge to the graph to further contextualize the system behavior. BoAnon probabilistic graph allows the optimizer to find efficient configurations faster than other methods. We evaluate BoAnon via a hardware architecture search problem, achieving an improvement in energy-latency objectives ranging from $5-7$ x-factors improvement over the default architecture. With its novel contextual structure learning pipeline, BoAnon makes using SBO accessible for a wide range of other computer systems such as databases and stream processors.
翻译:当前的自动调试框架与计算机系统配置的调控纠缠不休,原因是其参数空间大、相互依存复杂、评价成本高。 利用概率模型, 结构型巴伊西亚优化(SBO)最近克服了这些困难。 SBO利用系统专家提供的背景资料对参数空间进行分解,从而导致快速趋同。 但是,建筑概率模型的复杂性阻碍了其更广泛的采用。 我们提议建立一个SBO框架BoAnon,即SBO框架,从日志中学习系统结构。 BoAnon提供一种API, 使专家能够将系统知识作为性能模型或组成部分依赖性能模型进行编码。 BoAnon在所学的结构中采用结构结构,将其转换成概率型图。然后,它将专家提供的知识应用于图中,以进一步将系统行为环境化。 BoA不具有概率性能的图形使优化者能够找到比其他方法更快的高效配置。 我们建议通过硬件结构搜索问题来评估BoAnon, 从而改进节能目标,从5-7美元x驱动器改进了系统作为性功能模型依赖性能模型。 BoA 使用新的SBOBO 流系统, 学习系统。