We propose a definition of higher inductive types in $(\infty,1)$-categories with finite limits. We show that the $(\infty,1)$-category of $(\infty,1)$-categories with higher inductive types is finitarily presentable. In particular, the initial $(\infty,1)$-category with higher inductive types exists. We prove a form of canonicity: the global section functor for the initial $(\infty,1)$-category with higher inductive types preserves higher inductive types.
翻译:暂无翻译