IPv6 scanning has always been a challenge for researchers in the field of network measurement. Due to the considerable IPv6 address space, while recent network speed and computational power have been improved, using a brute-force approach to probe the entire network space of IPv6 is almost impossible. Systems are required an algorithmic approach to generate more possible active target candidate sets to probe. In this paper, we first try to use deep learning to design such IPv6 target generation algorithms. The model effectively learns the address structure by stacking the gated convolutional layer to construct Variational Autoencoder (VAE). We also introduce two address classification methods to improve the model effect of the target generation. Experiments indicate that our approach 6GCVAE outperformed the conventional VAE models and the state-of-the-art target generation algorithm in two active address datasets.
翻译:IPv6 扫描一直是网络测量领域研究人员面临的一项挑战。 由于IPv6 地址空间相当大, 最近的网络速度和计算能力已经得到改善, 使用粗力方法探测整个 IPv6 网络空间几乎是不可能的。 系统需要一种算法方法来生成更活跃的目标候选数据集。 在本文中, 我们首先尝试利用深层学习来设计这样的 IPv6 目标生成算法。 模型通过堆叠门式共振层来构建变异式自动电解码( VAE) 有效地学习了地址结构。 我们还引入了两种地址分类方法来改进目标生成的模型效果。 实验显示, 我们的 6GCVAE 方法超过了常规 VAE 模型和两个活跃地址数据集中的最新目标生成算法 。