Large Language Models (LLMs) have evolved into AI agents that interact with external tools and environments to perform complex tasks. The Model Context Protocol (MCP) has become the de facto standard for connecting agents with such resources, but security has lagged behind: thousands of MCP servers execute with unrestricted access to host systems, creating a broad attack surface. In this paper, we introduce AgentBound, the first access control framework for MCP servers. AgentBound combines a declarative policy mechanism, inspired by the Android permission model, with a policy enforcement engine that contains malicious behavior without requiring MCP server modifications. We build a dataset containing the 296 most popular MCP servers, and show that access control policies can be generated automatically from source code with 80.9% accuracy. We also show that AgentBound blocks the majority of security threats in several malicious MCP servers, and that policy enforcement engine introduces negligible overhead. Our contributions provide developers and project managers with a practical foundation for securing MCP servers while maintaining productivity, enabling researchers and tool builders to explore new directions for declarative access control and MCP security.


翻译:大型语言模型(LLMs)已演化为能够与外部工具及环境交互以执行复杂任务的AI智能体。模型上下文协议(MCP)已成为连接智能体与这类资源的事实标准,但其安全性发展滞后:数以千计的MCP服务器在拥有对主机系统无限制访问权限的情况下运行,形成了广泛的攻击面。本文提出AgentBound,首个面向MCP服务器的访问控制框架。AgentBound结合了受Android权限模型启发的声明式策略机制,以及一个无需修改MCP服务器即可遏制恶意行为的策略执行引擎。我们构建了一个包含296个最流行MCP服务器的数据集,并证明访问控制策略可从源代码自动生成,准确率达80.9%。实验表明,AgentBound能够阻断多个恶意MCP服务器中的大部分安全威胁,且策略执行引擎引入的开销可忽略不计。本研究的贡献为开发者和项目管理者提供了保障MCP服务器安全且不影响生产效率的实用基础,使研究者和工具构建者能够探索声明式访问控制与MCP安全的新方向。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
12+阅读 · 2023年5月22日
Arxiv
13+阅读 · 2021年3月3日
Arxiv
12+阅读 · 2020年12月10日
Arxiv
12+阅读 · 2019年2月26日
Simplifying Graph Convolutional Networks
Arxiv
12+阅读 · 2019年2月19日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Arxiv
12+阅读 · 2023年5月22日
Arxiv
13+阅读 · 2021年3月3日
Arxiv
12+阅读 · 2020年12月10日
Arxiv
12+阅读 · 2019年2月26日
Simplifying Graph Convolutional Networks
Arxiv
12+阅读 · 2019年2月19日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员