While multilingual language models can improve NLP performance on low-resource languages by leveraging higher-resource languages, they also reduce average performance on all languages (the 'curse of multilinguality'). Here we show another problem with multilingual models: grammatical structures in higher-resource languages bleed into lower-resource languages, a phenomenon we call grammatical structure bias. We show this bias via a novel method for comparing the fluency of multilingual models to the fluency of monolingual Spanish and Greek models: testing their preference for two carefully-chosen variable grammatical structures (optional pronoun-drop in Spanish and optional Subject-Verb ordering in Greek). We find that multilingual BERT is biased toward the English-like setting (explicit pronouns and Subject-Verb-Object ordering) as compared to our monolingual control language model. With our case studies, we hope to bring to light the fine-grained ways in which multilingual models can be biased,and encourage more linguistically-aware fluency evaluation.
翻译:虽然多语言语言模型可以通过利用高资源语言来提高低资源语言的NLP性能,但它们也降低了所有语言的平均性能(多语言诅咒)。
在这里,我们展示了多语言模型的另一个问题:高资源语言中的语法结构渗透到低资源语言中,我们称之为语法结构偏见。我们通过一种新颖的方法比较多语言模型和单语西班牙语和希腊语模型的流畅度:测试它们对两种特别选择的可变语法结构的偏好(在西班牙语中是可选代词省略,在希腊语中是可选主语-谓语序)。我们发现,与我们的单语控制语言模型相比,多语言BERT倾向于使用类似英语的设置(明确代词和主语-谓语-宾语顺序)。通过我们的案例研究,我们希望揭示多语言模型可能存在的细微偏见,并鼓励更加注重语言学流利度评估的方法。