Soft robots have struggled to support large forces and moments while also supporting their own weight against gravity. This limits their ability to reach certain configurations necessary for tasks such as inspection and pushing objects up. We have overcome this limitation by creating an electrically driven metamaterial soft arm using handed shearing auxetics (HSA) and bendable extendable torque resistant (BETR) shafts. These use the large force and torque capacity of HSAs and the nestable torque transmission of BETRs to create a strong soft arm. We found that the HSA arm was able to push 2.3 kg vertically and lift more than 600 g when positioned horizontally, supporting 0.33 Nm of torque at the base. The arm is able to move between waypoints while carrying the large payload and demonstrates consistent movement with path variance below 5 mm. The HSA arm's ability to perform active grasping with HSA grippers was also demonstrated, requiring 20 N of pull force to dislodge the object. Finally, we test the arm in a pipe inspection task. The arm is able to locate all the defects while sliding against the inner surface of the pipe, demonstrating its compliance.
翻译:暂无翻译