Most counterfactual inference frameworks traditionally assume acyclic structural causal models (SCMs), i.e. directed acyclic graphs (DAGs). However, many real-world systems (e.g. biological systems) contain feedback loops or cyclic dependencies that violate acyclicity. In this work, we study counterfactual inference in cyclic SCMs under shift-scale interventions, i.e., soft, policy-style changes that rescale and/or shift a variable's mechanism.
翻译:大多数反事实推理框架传统上假设结构因果模型(SCMs)为无环的,即有向无环图(DAGs)。然而,许多现实世界系统(例如生物系统)包含反馈循环或循环依赖,这违反了无环性假设。在本研究中,我们探讨了在移位-尺度干预下循环结构因果模型中的反事实推理问题,此类干预指对变量机制进行软性、策略式的调整,包括重新缩放和/或平移操作。