This paper addresses exact approaches to multi-agent collective construction problem which tasks a group of cooperative agents to build a given structure in a blocksworld under the gravity constraint. We propose a generalization of the existing exact model based on mixed integer linear programming by accommodating varying agent action durations. We refer to the model as a fraction-time model. The generalization by introducing action duration enables one to create a more realistic model for various domains. It provides a significant reduction of plan execution duration at the cost of increased computational time, which rises steeply the closer the model gets to the exact real-world action duration. We also propose a makespan estimation function for the fraction-time model. This can be used to estimate the construction time reduction size for the purpose of cost-benefit analysis. The fraction-time model and the makespan estimation function have been evaluated in a series of experiments using a set of benchmark structures. The results show a significant reduction of plan execution duration for non-constant duration actions due to decreasing synchronization overhead at the end of each action. According to the results, the makespan estimation function provides a reasonably accurate estimate of the makespan.
翻译:暂无翻译