Le and Wulff-Nilsen [SODA '24] initiated a systematic study of VC set systems to unweighted $K_h$-minor-free directed graphs. We extend their results in the following ways: $\bullet$ We present the first application of VC set systems for real-weighted minor-free digraphs to build the first exact subquadratic-space distance oracle with $O(\log n)$ query time. Prior work using VC set systems only applied in unweighted and integer weighted digraphs. $\bullet$ We describe a unified system for analyzing the VC dimension of balls and the LP set system (based on Li--Parter [STOC '19]) of Le--Wulff-Nilsen [SODA '24] using pseudodimension. This is a major conceptual contribution that allows for both improving our understanding of set systems in digraphs as well as improving the bound of the LP set system in directed graphs to $h-1$. $\bullet$ We present the first application of these set systems in a dynamic setting. Specifically, we construct decremental reachability oracles with subquadratic total update time and constant query time. Prior to this work, it was not known if this was possible to construct oracles with subquadratic total update time and polylogarithmic query time, even in planar digraphs. $\bullet$ We describe subquadratic time algorithms for unweighted digraphs including (1) constructions of exact distance oracles, (2) computation of vertex eccentricities and Wiener index. The main innovation in obtaining these results is the use of dynamic string data structures.


翻译:暂无翻译

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
82+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年12月4日
Arxiv
0+阅读 · 2024年12月4日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
82+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员