A NOtice To AirMen (NOTAM) contains important flight route related information. To search and filter them, NOTAMs are grouped into categories called QCodes. In this paper, we develop a tool to predict, with some explanations, a Qcode for a NOTAM. We present a way to extend the interpretable binary classification using column generation proposed in Dash, Gunluk, and Wei (2018) to a multiclass text classification method. We describe the techniques used to tackle the issues related to one vs-rest classification, such as multiple outputs and class imbalances. Furthermore, we introduce some heuristics, including the use of a CP-SAT solver for the subproblems, to reduce the training time. Finally, we show that our approach compares favorably with state-of-the-art machine learning algorithms like Linear SVM and small neural networks while adding the needed interpretability component.
翻译:NOTice To AirMen (NOTAM) 包含重要的飞行路线相关信息。 为了搜索和过滤它们, NOTAM 被归为名为 QCodes 的类别。 在本文中, 我们开发了一个工具, 以一些解释来预测一个 NOAM 的 Q 代码 。 我们提出一种方法, 使用 Dash、 Gunluk 和 Wei ( 2018) 中建议的可解释的二进制分类法来扩展到多级文本分类法 。 我们描述了用来解决与一对一分类有关的问题的技术, 如多重输出和类不平衡 。 此外, 我们引入了一些螺旋论, 包括使用 CP- SAT 解答器来减少子问题的培训时间 。 最后, 我们展示了一种方法, 将我们的方法比得上最先进的机器学习算法, 如 Linear SVM 和小型神经网络, 同时添加所需的可解释性部件 。