As the use of deep learning techniques has grown across various fields over the past decade, complaints about the opaqueness of the black-box models have increased, resulting in an increased focus on transparency in deep learning models. This work investigates various methods to improve the interpretability of deep neural networks for natural language processing (NLP) tasks, including machine translation and sentiment analysis. We provide a comprehensive discussion on the definition of the term \textit{interpretability} and its various aspects at the beginning of this work. The methods collected and summarised in this survey are only associated with local interpretation and are divided into three categories: 1) explaining the model's predictions through related input features; 2) explaining through natural language explanation; 3) probing the hidden states of models and word representations.


翻译:过去十年来,随着深层学习技术在各个领域的使用增加,对黑盒模型不透明的抱怨增加,导致深层学习模型更加注重透明度,这项工作调查了各种方法,以提高天然语言处理任务深层神经网络的可解释性,包括机器翻译和情绪分析。我们在这项工作开始时全面讨论了“textit{解释性}”一词的定义及其各个方面。本调查所收集和总结的方法仅与当地解释有关,分为三类:1)通过相关输入特征解释模型的预测;2)通过自然语言解释解释解释;3)研究模型和文字表述的隐蔽状态。

0
下载
关闭预览

相关内容

Processing 是一门开源编程语言和与之配套的集成开发环境(IDE)的名称。Processing 在电子艺术和视觉设计社区被用来教授编程基础,并运用于大量的新媒体和互动艺术作品中。
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
AI可解释性文献列表
专知
42+阅读 · 2019年10月7日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
10页MIT可解释机器学习最新论文
专知
5+阅读 · 2019年2月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
An Attentive Survey of Attention Models
Arxiv
44+阅读 · 2020年12月15日
Arxiv
16+阅读 · 2018年2月7日
VIP会员
相关VIP内容
相关资讯
AI可解释性文献列表
专知
42+阅读 · 2019年10月7日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
10页MIT可解释机器学习最新论文
专知
5+阅读 · 2019年2月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Top
微信扫码咨询专知VIP会员