In previous work, Abramsky, Dawar and Wang (LiCS 2017) and Abramsky and Shah (CSL 2018) have shown how a range of model comparison games which play a central role in finite model theory, including Ehrenfeucht-Fraisse, pebbling, and bisimulation games, can be captured in terms of resource-indexed comonads on the category of relational structures. Moreover, the coalgebras for these comonads capture important combinatorial parameters such as tree-width and tree-depth. The present paper extends this analysis to quantifier-guarded fragments of first-order logic. We give a systematic account, covering atomic, loose and clique guards. In each case, we show that coKleisli morphisms capture winning strategies for Duplicator in the existential guarded bisimulation game, while back-and-forth bisimulation, and hence equivalence in the full guarded fragment, is captured by spans of open morphisms. We study the coalgebras for these comonads, and show that they correspond to guarded tree decompositions. We relate these constructions to a syntax-free setting, with a comonad on the category of hypergraphs.
翻译:在先前的工作中,Abramsky、Dawar和Wang(LiscS 2017年)以及Abramsky和Shah(CSL 2018年)已经展示了一系列模型比较游戏,这些模型比较游戏在有限模型理论(包括Ehrenfeucht-Fraisse、epobing和Breating 游戏)中发挥着核心作用,这些模型比较游戏在关系结构类别中可以以资源指数共鸣的方式捕捉到。此外,这些comonads(2017年)和Abramsky和Shah(2018年CSL 2018年)捕捉到重要的组合参数,如树枝和树深度。本文件将这一分析扩展到第一级逻辑中受质保护的碎片。我们给出了一个系统化的账户,涵盖原子、松散和园林卫卫。在每种情况下,我们展示了Colisli形态为Ducliclactor(Duplicator)在维系保护的刺激游戏中为Dubliculate 的获胜战略,而后方和全制碎片中的对等均称是被开放形态和树形碎片碎片的跨。我们研究了这些共建的系统。我们研究了这些共建的分类,并显示了这些树的比了这些树。