We investigate a geometric generalization of trifference, a concept introduced by Elias in 1988 in the study of zero-error channel capacity. In the discrete setting, a code C \subseteq {0,1,2}^n is trifferent if for any three distinct codewords x, y, z in C, there exists a coordinate i in [n] where x_i, y_i, z_i are all distinct. Determining the maximum size of such codes remains a central open problem; the classical upper bound |C| \leq 2 * (3/2)^n, proved via a simple pruning argument, has resisted significant improvement. Motivated by the search for new techniques, and in line with vectorial extensions of other classical combinatorial notions, we introduce the concept of vector trifferent codes. Consider C \subseteq (S^2)^n, where the alphabet is the unit sphere S^2 = { v in R^3 : ||v|| = 1 }. We say C is vector trifferent if for any three distinct x, y, z in C, there is an index i where the vectors x_i, y_i, z_i are mutually orthogonal. A direct reduction of the vectorial problem to the discrete setting appears infeasible, making it difficult to replicate Elias's pruning argument. Nevertheless, we develop a new method to establish the upper bound |C| \leq (sqrt(2) + o(1)) * (3/2)^n. Interestingly, our approach, when adapted back to the discrete setting, yields a polynomial improvement to Elias's bound: |C| \lesssim n^(-1/4) * (3/2)^n. This improvement arises from a technique that parallels, but is not identical to, a recent method of the authors, though it still falls short of the sharper n^(-2/5) factor obtained there. We also generalize the concept of vector trifferent codes to richer alphabets and prove a vectorial version of the Fredman-Komlos theorem (1984) for general k-separating codes.
翻译:我们研究了三异码的几何推广,三异码是Elias于1988年在研究零误差信道容量时引入的概念。在离散情形中,若码C \subseteq {0,1,2}^n满足:对于其中任意三个不同的码字x, y, z,均存在一个坐标i \in [n]使得x_i, y_i, z_i三者互不相同,则称C为三异码。确定此类码的最大规模仍是一个核心的开放问题;通过简单的剪枝论证证明的经典上界|C| \leq 2 * (3/2)^n一直难以获得显著改进。为寻求新方法,并顺应其他经典组合概念的向量化推广趋势,我们引入了向量三异码的概念。考虑C \subseteq (S^2)^n,其中字母表为单位球面S^2 = { v \in R^3 : ||v|| = 1 }。若对于C中任意三个不同的x, y, z,均存在一个索引i使得向量x_i, y_i, z_i两两正交,则称C为向量三异码。将向量问题直接归约到离散情形似乎不可行,这使得难以复现Elias的剪枝论证。尽管如此,我们发展了一种新方法来建立上界|C| \leq (sqrt(2) + o(1)) * (3/2)^n。有趣的是,当我们将此方法调整回离散情形时,得到了对Elias界的一个多项式改进:|C| \lesssim n^(-1/4) * (3/2)^n。这一改进源于一种与作者近期方法类似但不完全相同的技术,尽管它尚未达到该方法所获得的更优的n^(-2/5)因子。我们还将向量三异码的概念推广到更丰富的字母表,并证明了针对一般k-分离码的Fredman-Komlos定理(1984)的向量化版本。