Caching algorithms try to predict content popularity, and place the content closer to the users. Additionally, nowadays requests are increasingly driven by recommendation systems (RS). These important trends, point to the following: \emph{make RSs favor locally cached content}, this way operators reduce network costs, and users get better streaming rates. Nevertheless, this process should preserve the quality of the recommendations (QoR). In this work, we propose a Markov Chain model for a stochastic, recommendation-driven \emph{sequence} of requests, and formulate the problem of selecting high quality recommendations that minimize the network cost \emph{in the long run}. While the original optimization problem is non-convex, it can be convexified through a series of transformations. Moreover, we extend our framework for users who show preference in some positions of the recommendations' list. To our best knowledge, this is the first work to provide an optimal polynomial-time algorithm for these problems. Finally, testing our algorithms on real datasets suggests significant potential, e.g., $2\times$ improvement compared to baseline recommendations, and 80\% compared to a greedy network-friendly-RS (which optimizes the cost for I.I.D. requests), while preserving at least 90\% of the original QoR. Finally, we show that taking position preference into account leads to additional performance gains.


翻译:缓冲算法试图预测内容的受欢迎程度,并将内容更贴近用户。 此外, 如今的请求越来越受推荐系统( RS) 驱动。 这些重要趋势显示如下: \ emph{ make RSs 偏向本地缓存内容}, 这样操作者就可以降低网络成本, 用户就能得到更好的流速率。 然而, 这一过程应该保持建议的质量 。 在这项工作中, 我们为请求中的一个随机的、 推荐驱动的 \ emph{ sequence} 提议了一个 Markov 链 模型, 并提出选择高品质建议的问题, 以便尽可能降低网络的成本。 这些重要的趋势是: 虽然最初的优化问题不是 Convex, 但可以通过一系列的转换来解析。 此外, 我们扩展了我们的框架, 用于那些在建议列表的某些位置中表现出偏好选择的用户 。 我们最了解的是, 这是第一个为这些问题提供最佳的多时段时间算法。 最后, 测试我们真实的算法显示巨大的潜力, 比如, $2\ time$( Q$) 来显示最不固定的网络的收益, 最后显示最接近于原始的网络, 80 和最接近的收益。

0
下载
关闭预览

相关内容

【DeepMind】多模态预训练模型概述,37页ppt
专知会员服务
94+阅读 · 2021年7月2日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
LibRec 精选:位置感知的长序列会话推荐
LibRec智能推荐
3+阅读 · 2019年5月17日
LibRec 精选:连通知识图谱与推荐系统
LibRec智能推荐
3+阅读 · 2018年8月9日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
【推荐】RNN最新研究进展综述
机器学习研究会
26+阅读 · 2018年1月6日
LibRec 每周精选:10篇每个人都应该读的RecSys文章
LibRec智能推荐
5+阅读 · 2018年1月1日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】视频目标分割基础
机器学习研究会
9+阅读 · 2017年9月19日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Arxiv
14+阅读 · 2018年4月18日
Arxiv
4+阅读 · 2018年4月9日
Arxiv
6+阅读 · 2018年2月7日
VIP会员
相关VIP内容
【DeepMind】多模态预训练模型概述,37页ppt
专知会员服务
94+阅读 · 2021年7月2日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
LibRec 精选:位置感知的长序列会话推荐
LibRec智能推荐
3+阅读 · 2019年5月17日
LibRec 精选:连通知识图谱与推荐系统
LibRec智能推荐
3+阅读 · 2018年8月9日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
【推荐】RNN最新研究进展综述
机器学习研究会
26+阅读 · 2018年1月6日
LibRec 每周精选:10篇每个人都应该读的RecSys文章
LibRec智能推荐
5+阅读 · 2018年1月1日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】视频目标分割基础
机器学习研究会
9+阅读 · 2017年9月19日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Top
微信扫码咨询专知VIP会员