In this work we discuss the impact of nuisance parameters on the effectiveness of machine learning in high-energy physics problems, and provide a review of techniques that allow to include their effect and reduce their impact in the search for optimal selection criteria and variable transformations. The introduction of nuisance parameters complicates the supervised learning task and its correspondence with the data analysis goal, due to their contribution degrading the model performances in real data, and the necessary addition of uncertainties in the resulting statistical inference. The approaches discussed include nuisance-parameterized models, modified or adversary losses, semi-supervised learning approaches, and inference-aware techniques.
翻译:在这项工作中,我们讨论了破坏因素参数对高能物理学问题中机器学习效力的影响,并审查了在寻找最佳选择标准和变异转换时能够包括其影响和减少其影响的技术。引入破坏因素参数使受监督的学习任务及其与数据分析目标的对应关系复杂化,因为它们有助于降低模型在真实数据中的性能,并在由此得出的统计推论中增加了必要的不确定性。所讨论的方法包括破坏因素比喻模型、修改或对手损失、半监督的学习方法以及推断认知技术。