Modern internet of things (IoT) devices leverage machine learning inference using sensed data on-device rather than offloading them to the cloud. Commonly known as inference at-the-edge, this gives many benefits to the users, including personalization and security. However, such applications demand high energy efficiency and robustness. In this paper we propose a method for reduced area and power overhead of self-timed early-propagative asynchronous inference circuits, designed using the principles of learning automata. Due to natural resilience to timing as well as logic underpinning, the circuits are tolerant to variations in environment and supply voltage whilst enabling the lowest possible latency. Our method is exemplified through an inference datapath for a low power machine learning application. The circuit builds on the Tsetlin machine algorithm further enhancing its energy efficiency. Average latency of the proposed circuit is reduced by 10x compared with the synchronous implementation whilst maintaining similar area. Robustness of the proposed circuit is proven through post-synthesis simulation with 0.25 V to 1.2 V supply. Functional correctness is maintained and latency scales with gate delay as voltage is decreased.


翻译:现代事物互联网( IoT) 设备利用在设备上而不是向云中卸载的感知数据进行机器学习的推论。 通常被称为在前沿的推论,这给用户带来许多好处, 包括个性化和安全。 但是,这些应用要求高能效和稳健性。 在本文中,我们建议了一种方法,用学习自时的早期透析无同步导电路的同步电路降低面积和功率。 由于自然适应时间和逻辑支撑,电路可以容忍环境和供应电压的变化,同时允许尽可能低的悬浮。 我们的方法通过低功率机学习应用的推断数据路径加以示范。 电路以Tsetlin机算法为基础,进一步提高其能效。 与同步同时保持类似区域的同时,拟议电路的平均宽度减少10x。 通过以0. 25 V 到 1.2 V 供应的后同步模拟, 电路的固度得到验证。 功能校正性校正性校正性, 与软性平比值保持。

0
下载
关闭预览

相关内容

知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
110+阅读 · 2020年6月10日
专知会员服务
63+阅读 · 2020年3月4日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
计算机类 | PLDI 2020等国际会议信息6条
Call4Papers
3+阅读 · 2019年7月8日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
计算机 | 中低难度国际会议信息6条
Call4Papers
7+阅读 · 2019年5月16日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
人工智能 | UAI 2019等国际会议信息4条
Call4Papers
6+阅读 · 2019年1月14日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
AI/ML/DNN硬件加速设计怎么入门?
StarryHeavensAbove
11+阅读 · 2018年12月4日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年2月7日
Arxiv
0+阅读 · 2021年2月4日
A Survey on Edge Intelligence
Arxiv
52+阅读 · 2020年3月26日
VIP会员
相关资讯
计算机类 | PLDI 2020等国际会议信息6条
Call4Papers
3+阅读 · 2019年7月8日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
计算机 | 中低难度国际会议信息6条
Call4Papers
7+阅读 · 2019年5月16日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
人工智能 | UAI 2019等国际会议信息4条
Call4Papers
6+阅读 · 2019年1月14日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
AI/ML/DNN硬件加速设计怎么入门?
StarryHeavensAbove
11+阅读 · 2018年12月4日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员