While classic control theory offers state of the art solutions in many problem scenarios, it is often desired to improve beyond the structure of such solutions and surpass their limitations. To this end, residual policy learning (RPL) offers a formulation to improve existing controllers with reinforcement learning (RL) by learning an additive "residual" to the output of a given controller. However, the applicability of such an approach highly depends on the structure of the controller. Often, internal feedback signals of the controller limit an RL algorithm to adequately change the policy and, hence, learn the task. We propose a new formulation that addresses these limitations by also modifying the feedback signals to the controller with an RL policy and show superior performance of our approach on a contact-rich peg-insertion task under position and orientation uncertainty. In addition, we use a recent Cartesian impedance control architecture as the control framework which can be available to us as a black-box while assuming no knowledge about its input/output structure, and show the difficulties of standard RPL. Furthermore, we introduce an adaptive curriculum for the given task to gradually increase the task difficulty in terms of position and orientation uncertainty. A video showing the results can be found at https://youtu.be/SAZm_Krze7U .


翻译:虽然经典控制理论在许多问题情景中提供了最先进的解决方案,但通常希望改进这些解决方案的结构,超越这些解决方案的结构,超越其局限性。为此,残余政策学习(RPL)提供了一种提法,通过学习某个控制器输出的“剩余”添加剂“残余”来改进现有控制器,但这种方法的适用性在很大程度上取决于控制器的结构。通常,控制器的内部反馈信号限制RL算法,以适当改变政策,从而了解任务。我们提出了一个新的提法,通过修改给控制器的反馈信号,以RL政策解决这些限制,并显示我们在定位和方向不确定的情况下,在接触-富固的插入任务上表现优异。此外,我们使用最近的卡泰斯阻力控制架构作为控制框架,我们可以利用它作为黑箱,同时假设对它的投入/产出结构一无所知,并显示标准RPL的难度。此外,我们为特定任务引入了适应性课程,以逐步增加定位和方向不确定性方面的任务难度。AVE7K显示结果。

0
下载
关闭预览

相关内容

深度强化学习策略梯度教程,53页ppt
专知会员服务
183+阅读 · 2020年2月1日
【反馈循环自编码器】FEEDBACK RECURRENT AUTOENCODER
专知会员服务
23+阅读 · 2020年1月28日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
OpenAI丨深度强化学习关键论文列表
中国人工智能学会
17+阅读 · 2018年11月10日
【OpenAI】深度强化学习关键论文列表
专知
11+阅读 · 2018年11月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
13+阅读 · 2018年4月27日
【推荐】直接未来预测:增强学习监督学习
机器学习研究会
6+阅读 · 2017年11月24日
Arxiv
0+阅读 · 2021年10月1日
Arxiv
0+阅读 · 2021年9月30日
Arxiv
7+阅读 · 2018年12月26日
Residual Policy Learning
Arxiv
4+阅读 · 2018年12月15日
Arxiv
3+阅读 · 2018年10月11日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
OpenAI丨深度强化学习关键论文列表
中国人工智能学会
17+阅读 · 2018年11月10日
【OpenAI】深度强化学习关键论文列表
专知
11+阅读 · 2018年11月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
13+阅读 · 2018年4月27日
【推荐】直接未来预测:增强学习监督学习
机器学习研究会
6+阅读 · 2017年11月24日
Top
微信扫码咨询专知VIP会员