With known cause of death (CoD), competing risk survival methods are applicable in estimating disease-specific survival. Relative survival analysis may be used to estimate disease-specific survival when cause of death is either unknown or subject to misspecification and not reliable for practical usage. This method is popular for population-based cancer survival studies using registry data and does not require CoD information. The standard estimator is the ratio of all-cause survival in the cancer cohort group to the known expected survival from a general reference population. Disease-specific death competes with other causes of mortality, potentially creating dependence among the CoD. The standard ratio estimate is only valid when death from disease and death from other causes are independent. To relax the independence assumption, we formulate dependence using a copula-based model. Likelihood-based parametric method is used to fit the distribution of disease-specific death without CoD information, where the copula is assumed known and the distribution of other cause of mortality is derived from the reference population. We propose a sensitivity analysis, where the analysis is conducted across a range of assumed dependence structures. We demonstrate the utility of our method through simulation studies and an application to French breast cancer data.


翻译:使用已知的死亡原因(CoD),在估计特定疾病生存情况时,可适用相竞的风险生存方法。当死亡原因不明或被误认为具体死亡原因,且实际使用不可靠时,可使用相对生存分析来估计特定疾病的生存情况。这种方法对基于人口的癌症存活情况研究很受欢迎,使用登记数据进行,并不需要CoD信息。标准估计值是癌症组群中所有原因的存活率与一般参照人口已知的预期存活率之比。特定疾病死亡与其他死亡原因相竞争,有可能在CoD之间产生依赖性。标准比率估计只有在疾病死亡和其他原因的死亡是独立的情况下才有效。为了放松独立假设,我们使用基于Copula的模型来制定依赖性。在没有CoD信息的情况下,使用基于类似参数的方法适应特定疾病死亡的分布,假设为Copula,其他死亡原因的分布来自参考人口。我们提议进行敏感性分析,在假设的多种依赖性结构中进行分析。我们通过模拟研究和应用法国乳腺癌数据来证明我们的方法的效用。

0
下载
关闭预览

相关内容

专知会员服务
40+阅读 · 2020年9月6日
迁移学习简明教程,11页ppt
专知会员服务
108+阅读 · 2020年8月4日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
49+阅读 · 2019年9月24日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
美国化学会 (ACS) 北京代表处招聘
知社学术圈
11+阅读 · 2018年9月4日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2022年2月9日
Arxiv
6+阅读 · 2021年10月26日
Arxiv
4+阅读 · 2018年1月15日
VIP会员
相关VIP内容
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
美国化学会 (ACS) 北京代表处招聘
知社学术圈
11+阅读 · 2018年9月4日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员