Motivated by connections between algebraic complexity lower bounds and tensor decompositions, we investigate Koszul-Young flattenings, which are the main ingredient in recent lower bounds for matrix multiplication. Based on this tool we give a new algorithm for decomposing an $n_1 \times n_2 \times n_3$ tensor as the sum of a minimal number of rank-1 terms, and certifying uniqueness of this decomposition. For $n_1 \le n_2 \le n_3$ with $n_1 \to \infty$ and $n_3/n_2 = O(1)$, our algorithm is guaranteed to succeed when the tensor rank is bounded by $r \le (1-\epsilon)(n_2 + n_3)$ for an arbitrary $\epsilon > 0$, provided the tensor components are generically chosen. For any fixed $\epsilon$, the runtime is polynomial in $n_3$. When $n_2 = n_3 = n$, our condition on the rank gives a factor-of-2 improvement over the classical simultaneous diagonalization algorithm, which requires $r \le n$, and also improves on the recent algorithm of Koiran (2024) which requires $r \le 4n/3$. It also improves on the PhD thesis of Persu (2018) which solves rank detection for $r \leq 3n/2$. We complement our upper bounds by showing limitations, in particular that no flattening of the style we consider can surpass rank $n_2 + n_3$. Furthermore, for $n \times n \times n$ tensors, we show that an even more general class of degree-$d$ polynomial flattenings cannot surpass rank $Cn$ for a constant $C = C(d)$. This suggests that for tensor decompositions, the case of generic components may be fundamentally harder than that of random components, where efficient decomposition is possible even in highly overcomplete settings.


翻译:受代数复杂性下界与张量分解之间联系的启发,我们研究了Koszul-Young展开——这是近期矩阵乘法下界证明中的核心工具。基于这一工具,我们提出了一种新算法,用于将 $n_1 \times n_2 \times n_3$ 张量分解为最少数量的秩-1项之和,并验证该分解的唯一性。对于满足 $n_1 \le n_2 \le n_3$、$n_1 \to \infty$ 且 $n_3/n_2 = O(1)$ 的张量,当张量分量以一般方式选取时,只要张量秩满足 $r \le (1-\epsilon)(n_2 + n_3)$(其中 $\epsilon > 0$ 为任意常数),我们的算法保证成功。对于任意固定的 $\epsilon$,算法运行时间是 $n_3$ 的多项式。当 $n_2 = n_3 = n$ 时,我们对秩的条件相较于经典的联合对角化算法(要求 $r \le n$)实现了两倍的改进,同时也优于Koiran (2024) 近期提出的算法(要求 $r \le 4n/3$),并改进了Persu (2018) 博士论文中秩检测所要求的 $r \leq 3n/2$ 条件。我们通过揭示方法的局限性来补充上界结果:特别地,我们证明我们所考虑的这类展开方法无法超越秩 $n_2 + n_3$。此外,对于 $n \times n \times n$ 张量,我们证明即使更一般的 $d$ 次多项式展开类也无法超越秩 $Cn$,其中常数 $C = C(d)$。这表明对于张量分解问题,一般分量情形可能本质上比随机分量情形更为困难——后者即使在高度过完备的设置下也可能实现高效分解。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员