Surgical action triplet recognition provides a better understanding of the surgical scene. This task is of high relevance as it provides to the surgeon with context-aware support and safety. The current go-to strategy for improving performance is the development of new network mechanisms. However, the performance of current state-of-the-art techniques is substantially lower than other surgical tasks. Why is this happening? This is the question that we address in this work. We present the first study to understand the failure of existing deep learning models through the lens of robustness and explainabilty. Firstly, we study current existing models under weak and strong $\delta-$perturbations via adversarial optimisation scheme. We then provide the failure modes via feature based explanations. Our study revels that the key for improving performance and increasing reliability is in the core and spurious attributes. Our work opens the door to more trustworthiness and reliability deep learning models in surgical science.
翻译:外科手术三重认知有助于更好地了解外科手术场景。 此项任务具有高度相关性, 因为它为外科医生提供了符合背景的支持和安全性。 目前改进绩效的上到上的战略是开发新的网络机制。 然而, 目前最先进的技术的性能大大低于其他外科任务。 为什么会发生这种情况? 这是我们在这项工作中处理的问题。 我们通过强健和解释性的角度提出第一个研究, 以了解现有深层学习模型的失败。 首先, 我们通过对抗性优化计划, 研究现有模型在疲软和强健的 $\delta-$perburbation 下。 我们随后通过基于特征的解释提供失败模式。 我们的研究显示,改进性能和增强可靠性的关键在于核心和欺骗性属性。 我们的工作打开了在外科科学中更加可信和可靠的深层学习模型的大门。