Structured Light Illumination (SLI) systems have been used for reliable indoor dense 3D scanning via phase triangulation. However, mobile SLI systems for 360 degree 3D reconstruction demand 3D point cloud registration, involving high computational complexity. In this paper, we propose a phase based Simultaneous Localization and Mapping (Phase-SLAM) framework for fast and accurate SLI sensor pose estimation and 3D object reconstruction. The novelty of this work is threefold: (1) developing a reprojection model from 3D points to 2D phase data towards phase registration with low computational complexity; (2) developing a local optimizer to achieve SLI sensor pose estimation (odometry) using the derived Jacobian matrix for the 6 DoF variables; (3) developing a compressive phase comparison method to achieve high-efficiency loop closure detection. The whole Phase-SLAM pipeline is then exploited using existing global pose graph optimization techniques. We build datasets from both the unreal simulation platform and a robotic arm based SLI system in real-world to verify the proposed approach. The experiment results demonstrate that the proposed Phase-SLAM outperforms other state-of-the-art methods in terms of the efficiency and accuracy of pose estimation and 3D reconstruction. The open-source code is available at https://github.com/ZHENGXi-git/Phase-SLAM.
翻译:结构化的光光光透射系统(SLI)已用于通过阶段三角测量进行可靠的室内密度三维扫描;然而,为360度3D重建需要3D点云的移动性SLI系统已用于360度3D重建需求3D点云登记,涉及高计算复杂度;在本文件中,我们提议为快速和准确的 SLI 传感器建立基于同步的同步本地化和绘图(SLAM)框架(Sseq-SLAM),以提供估计和3D对象重建。这项工作的新颖之处有三:(1) 开发一个从3D点到2D阶段数据的再预测模型,以进行低计算复杂性的阶段登记;(2) 开发一个本地优化系统,以利用衍生的 Jacobian 矩阵对3D点云进行估计(度测量);(3) 开发一个压缩阶段比较方法,以实现高效环闭检测;然后利用现有的全球表面图像优化技术来开发整个SLAM管道。我们从不真实的模拟平台和现实世界基于机器人的SLI系统建立数据集,以核实拟议的方法。实验结果显示,拟议的SLAM-SLAM系统超出了SALM/OF- Streab-stal-SIM-SIM-arview-de-arti-s-st-stal-armax-s-s-stal-stal-armax-arma-s-s-s