Angry Birds is a popular video game in which the player is provided with a sequence of birds to shoot from a slingshot. The task of the game is to destroy all green pigs with maximum possible score. Angry Birds appears to be a difficult task to solve for artificially intelligent agents due to the sequential decision-making, non-deterministic game environment, enormous state and action spaces and requirement to differentiate between multiple birds, their abilities and optimum tapping times. We describe the application of Deep Reinforcement learning by implementing Double Dueling Deep Q-network to play Angry Birds game. One of our main goals was to build an agent that is able to compete with previous participants and humans on the first 21 levels. In order to do so, we have collected a dataset of game frames that we used to train our agent on. We present different approaches and settings for DQN agent. We evaluate our agent using results of the previous participants of AIBirds competition, results of volunteer human players and present the results of AIBirds 2018 competition.
翻译:愤怒鸟是一种流行的游戏, 玩家在游戏中得到一组从弹弓上拍摄的鸟类。 游戏的任务是以尽可能最大的分数消灭所有绿猪。 愤怒鸟似乎是一个难以解决的人工智能剂问题, 这是因为先后决策、 非决定性的游戏环境、 巨大的状态和行动空间, 以及区分多鸟、 它们的能力和最佳利用时间的要求。 我们通过实施双倍决斗深网来玩愤怒鸟游戏来描述深强化学习的应用。 我们的主要目标之一是建立一个能够与前参与者和人类在前21级竞争的代理商。 为了做到这一点,我们收集了我们用来培训我们的代理商的游戏框架数据集。 我们为DQN代理商展示了不同的方法和设置。 我们用前AIBirds 比赛参与者的结果、 人类志愿参与者的结果以及 AIBirds 2018 竞赛的结果来评估我们的代理商。