Owning to the unremitting efforts by a few institutes, significant progress has recently been made in designing superhuman AIs in No-limit Texas Hold'em (NLTH), the primary testbed for large-scale imperfect-information game research. However, it remains challenging for new researchers to study this problem since there are no standard benchmarks for comparing with existing methods, which seriously hinders further developments in this research area. In this work, we present OpenHoldem, an integrated toolkit for large-scale imperfect-information game research using NLTH. OpenHoldem makes three main contributions to this research direction: 1) a standardized evaluation protocol for thoroughly evaluating different NLTH AIs, 2) three publicly available strong baselines for NLTH AI, and 3) an online testing platform with easy-to-use APIs for public NLTH AI evaluation. We have released OpenHoldem at http://holdem.ia.ac.cn/, hoping it facilitates further studies on the unsolved theoretical and computational issues in this area and cultivate crucial research problems like opponent modeling, large-scale equilibrium-finding, and human-computer interactive learning.


翻译:由于少数几个研究所作出了不懈的努力,最近在设计非人超人人工智能研究方面取得了显著进展,这是大规模不完善信息游戏研究的主要测试点,但对于新的研究人员来说,这一问题的研究仍然具有挑战性,因为没有标准的基准来比较现有的方法,这严重阻碍了这一研究领域的进一步发展。在这项工作中,我们介绍了利用NLTH进行大规模不完善信息游戏研究的综合工具包OpenHoldem。 OpenHoldem对这一研究方向作出了三大主要贡献:1) 彻底评估不同非人人工智能游戏(NLTH )的标准化评价协议,2) NLTH AI 的三种公开的强大基线,3) 一个便于公众使用API的在线测试平台,用于公众使用NLTH AI 评估。我们已经在http://holdem.ia.a.ac.cn/上公布了OpenHoldem,希望它能促进关于该领域尚未解决的理论和计算问题的进一步研究,并产生关键性的研究问题,例如对手模型、大规模平衡调查和人类计算机互动学习。

1
下载
关闭预览

相关内容

IFIP TC13 Conference on Human-Computer Interaction是人机交互领域的研究者和实践者展示其工作的重要平台。多年来,这些会议吸引了来自几个国家和文化的研究人员。官网链接:http://interact2019.org/
深度学习搜索,Exploring Deep Learning for Search
专知会员服务
57+阅读 · 2020年5月9日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
93+阅读 · 2019年12月23日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
机器学习相关资源(框架、库、软件)大列表
专知会员服务
39+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
LibRec 精选:位置感知的长序列会话推荐
LibRec智能推荐
3+阅读 · 2019年5月17日
人工智能 | SCI期刊专刊/国际会议信息7条
Call4Papers
7+阅读 · 2019年3月12日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
Arxiv
0+阅读 · 2021年2月11日
Deep learning for cardiac image segmentation: A review
Arxiv
21+阅读 · 2019年11月9日
Arxiv
12+阅读 · 2019年3月14日
Deep Reinforcement Learning: An Overview
Arxiv
17+阅读 · 2018年11月26日
Paraphrase Generation with Deep Reinforcement Learning
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
LibRec 精选:位置感知的长序列会话推荐
LibRec智能推荐
3+阅读 · 2019年5月17日
人工智能 | SCI期刊专刊/国际会议信息7条
Call4Papers
7+阅读 · 2019年3月12日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
Top
微信扫码咨询专知VIP会员