Owning to the unremitting efforts by a few institutes, significant progress has recently been made in designing superhuman AIs in No-limit Texas Hold'em (NLTH), the primary testbed for large-scale imperfect-information game research. However, it remains challenging for new researchers to study this problem since there are no standard benchmarks for comparing with existing methods, which seriously hinders further developments in this research area. In this work, we present OpenHoldem, an integrated toolkit for large-scale imperfect-information game research using NLTH. OpenHoldem makes three main contributions to this research direction: 1) a standardized evaluation protocol for thoroughly evaluating different NLTH AIs, 2) three publicly available strong baselines for NLTH AI, and 3) an online testing platform with easy-to-use APIs for public NLTH AI evaluation. We have released OpenHoldem at http://holdem.ia.ac.cn/, hoping it facilitates further studies on the unsolved theoretical and computational issues in this area and cultivate crucial research problems like opponent modeling, large-scale equilibrium-finding, and human-computer interactive learning.
翻译:由于少数几个研究所作出了不懈的努力,最近在设计非人超人人工智能研究方面取得了显著进展,这是大规模不完善信息游戏研究的主要测试点,但对于新的研究人员来说,这一问题的研究仍然具有挑战性,因为没有标准的基准来比较现有的方法,这严重阻碍了这一研究领域的进一步发展。在这项工作中,我们介绍了利用NLTH进行大规模不完善信息游戏研究的综合工具包OpenHoldem。 OpenHoldem对这一研究方向作出了三大主要贡献:1) 彻底评估不同非人人工智能游戏(NLTH )的标准化评价协议,2) NLTH AI 的三种公开的强大基线,3) 一个便于公众使用API的在线测试平台,用于公众使用NLTH AI 评估。我们已经在http://holdem.ia.a.ac.cn/上公布了OpenHoldem,希望它能促进关于该领域尚未解决的理论和计算问题的进一步研究,并产生关键性的研究问题,例如对手模型、大规模平衡调查和人类计算机互动学习。