Federated learning (FL) is a promising paradigm that enables distributed clients to collaboratively train a shared global model while keeping the training data locally. However, the performance of FL is often limited by poor communication links and slow convergence when FL is deployed over wireless networks. Besides, due to the limited radio resources, it is crucial to select clients and control resource allocation accurately for improved FL performance. Motivated by these challenges, a joint optimization problem of client selection and resource allocation is formulated in this paper, aiming to minimize the total time consumption of each round in FL over non-orthogonal multiple access (NOMA) enabled wireless network. Specifically, based on a metric termed the age of update (AoU), we first propose a novel client selection scheme by accounting for the staleness of the received local FL models. After that, the closed-form solutions of resource allocation are obtained by monotonicity analysis and dual decomposition method. Moreover, to further improve the performance of FL, the deployment of artificial neural network (ANN) at the server is proposed to predict the local FL models of the unselected clients at each round. Finally, extensive simulation results demonstrate the superior performance of the proposed schemes.


翻译:联邦学习是一种有前途的模式,可以使分布式客户端在保留本地训练数据的同时,协同训练共享全局模型。然而,当联邦学习部署在无线网络上时,其表现往往受限于不良的通信连接和收敛缓慢。此外,由于有限的无线电资源,准确选择客户端和控制资源分配对于提高联邦学习的性能至关重要。出于这些挑战的动机,本文提出了一个联合优化问题,即在 NOMA 启用的无线网络上最小化每轮联邦学习的总时间消耗的客户端选择和资源分配。具体而言,基于更新时代的度量方法,我们首先提出了一种新颖的客户端选择方案,考虑到接收到的本地联邦学习模型的过时程度。之后,通过单调性分析和对偶分解方法获得了资源分配的闭式解。此外,为了进一步提高联邦学习的性能,提出了在服务器端部署人工神经网络用于预测每轮未被选择的客户端的本地联邦学习模型。最后,广泛的模拟结果证明了所提出方案的卓越性能。

0
下载
关闭预览

相关内容

联邦学习(Federated Learning)是一种新兴的人工智能基础技术,在 2016 年由谷歌最先提出,原本用于解决安卓手机终端用户在本地更新模型的问题,其设计目标是在保障大数据交换时的信息安全、保护终端数据和个人数据隐私、保证合法合规的前提下,在多参与方或多计算结点之间开展高效率的机器学习。其中,联邦学习可使用的机器学习算法不局限于神经网络,还包括随机森林等重要算法。联邦学习有望成为下一代人工智能协同算法和协作网络的基础。
专知会员服务
62+阅读 · 2021年6月11日
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
89+阅读 · 2020年12月2日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
2+阅读 · 2023年6月2日
Arxiv
20+阅读 · 2022年10月10日
VIP会员
相关VIP内容
专知会员服务
62+阅读 · 2021年6月11日
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
89+阅读 · 2020年12月2日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员