Machine learning models are critically susceptible to evasion attacks from adversarial examples. Generally, adversarial examples, modified inputs deceptively similar to the original input, are constructed under whitebox settings by adversaries with full access to the model. However, recent attacks have shown a remarkable reduction in query numbers to craft adversarial examples using blackbox attacks. Particularly, alarming is the ability to exploit the classification decision from the access interface of a trained model provided by a growing number of Machine Learning as a Service providers including Google, Microsoft, IBM and used by a plethora of applications incorporating these models. The ability of an adversary to exploit only the predicted label from a model to craft adversarial examples is distinguished as a decision-based attack. In our study, we first deep dive into recent state-of-the-art decision-based attacks in ICLR and SP to highlight the costly nature of discovering low distortion adversarial employing gradient estimation methods. We develop a robust query efficient attack capable of avoiding entrapment in a local minimum and misdirection from noisy gradients seen in gradient estimation methods. The attack method we propose, RamBoAttack, exploits the notion of Randomized Block Coordinate Descent to explore the hidden classifier manifold, targeting perturbations to manipulate only localized input features to address the issues of gradient estimation methods. Importantly, the RamBoAttack is more robust to the different sample inputs available to an adversary and the targeted class. Overall, for a given target class, RamBoAttack is demonstrated to be more robust at achieving a lower distortion within a given query budget. We curate our extensive results using the large-scale high-resolution ImageNet dataset and open-source our attack, test samples and artifacts on GitHub.


翻译:机器学习模式极易受到来自对抗性实例的攻击。 一般来说, 对抗性实例、 与原始输入相似的修改性投入, 是由对手在白箱设置下建造的, 并且完全可以使用该模型。 然而, 最近的攻击显示, 使用黑箱攻击, 利用黑箱攻击 来编造对抗性攻击 。 特别令人震惊的是, 能够利用由越来越多的机器学习机构作为服务供应商提供的经过训练的模型的准入界面作出的分类决定, 包括谷歌、 微软、 IBM 和大量应用包含这些模型的应用。 对手仅利用模型的预测标签标签来制作对抗性例子的能力被区别为基于决定的攻击。 在我们的研究中, 我们首先深入潜入最近最先进的基于黑箱攻击性攻击性攻击性的例子, 来突出使用梯度估计方法发现低扭曲性对抗性对抗性攻击性攻击性攻击性决定性决定性决定性决定性决定性决定性决定性决定性决定性决定性决定性决定性决定性决定性决定性决定性决定性决定性决定性决定性决定性决定性决定性决定性决定性决定性决定性决定性决定性决定性决定性决定性决定性决定性决定性决定性决定性决定性决定性决定性决定性决定性决定性决定性决定性决定性决定性决定性决定性决定性决定性决定性决定性决定性决定性决定性决定性决定性决定性决定性决定性决定性决定性决定性决定性决定性决定性决定性决定性决定性决定性决定性决定性决定性决定性决定性决定性决定性决定性决定性决定性决定性决定性决定性决定性决定性决定性决定性决定性决定性决定性决定性决定性决定性决定性决定性决定性决定性决定性决定性决定性决定性决定性决定性决定性决定性决定性决定性决定性决定性决定性决定性决定性决定性决定性决定性决定性决定性决定性决定性决定性决定性决定性决定性决定性决定性决定性决定性决定性决定性决定性决定性决定性决定性决定性决定性决定性决定性决定性决定性决定性决定性决定性决定性决定性决定性决定性决定性决定性决定性决定性决定性决定性决定性决定性决定性决定性决定性决定

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
专知会员服务
124+阅读 · 2020年9月8日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
83+阅读 · 2022年7月16日
VIP会员
相关VIP内容
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员