End-to-end speech translation models have become a new trend in research due to their potential of reducing error propagation. However, these models still suffer from the challenge of data scarcity. How to effectively use unlabeled or other parallel corpora from machine translation is promising but still an open problem. In this paper, we propose Cross Speech-Text Network (XSTNet), an end-to-end model for speech-to-text translation. XSTNet takes both speech and text as input and outputs both transcription and translation text. The model benefits from its three key design aspects: a self-supervised pre-trained sub-network as the audio encoder, a multi-task training objective to exploit additional parallel bilingual text, and a progressive training procedure. We evaluate the performance of XSTNet and baselines on the MuST-C En-X and LibriSpeech En-Fr datasets. In particular, XSTNet achieves state-of-the-art results on all language directions with an average BLEU of 28.8, outperforming the previous best method by 3.2 BLEU. Code, models, cases, and more detailed analysis are available at https://github.com/ReneeYe/XSTNet.


翻译:终端到终端语音翻译模型(XSTNet)由于具有减少错误传播的潜力,已成为研究的新趋势。然而,这些模型仍然受到数据稀缺的挑战。如何有效使用机器翻译中未贴标签或其他平行的子公司是大有希望的,但仍然是一个尚未解决的问题。我们在此文件中提议Cross Speales-Text网络(XSTNet),这是一个语音到文本翻译的端到端模式。XSTNet将语音和文本作为输入和输出文本。该模型有三个关键设计方面的好处:一个自我监督的预先训练的子网络,作为音频编码器,一个多任务培训目标,利用额外的平行双语文本,以及一个渐进式培训程序。我们评估了XSTNet的性能和MuST-C En-X和LibSpeech En-Fr数据集的基线。特别是,XNet在所有语言方向上都取得了最先进的成果,平均为28.8级BLEU,将以往的最佳方法表现为3.2 BLEU代码、模型、案例和较详细的分析。

0
下载
关闭预览

相关内容

通过计算机进行不同语言之间的直接语音翻译,辅助不同语言背景的人们进行沟通已经成为世界各国研究的重点。 和一般的文本翻译不同,语音翻译需要把语音识别、机器翻译和语音合成三大技术进行集成,具有很大的挑战性。
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【资源】语音增强资源集锦
专知
8+阅读 · 2020年7月4日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
自然语言处理(二)机器翻译 篇 (NLP: machine translation)
DeepLearning中文论坛
10+阅读 · 2015年7月1日
Arxiv
5+阅读 · 2019年8月22日
Arxiv
8+阅读 · 2018年11月27日
Arxiv
8+阅读 · 2018年5月1日
Arxiv
6+阅读 · 2018年2月26日
Arxiv
7+阅读 · 2018年1月30日
VIP会员
相关资讯
【资源】语音增强资源集锦
专知
8+阅读 · 2020年7月4日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
自然语言处理(二)机器翻译 篇 (NLP: machine translation)
DeepLearning中文论坛
10+阅读 · 2015年7月1日
Top
微信扫码咨询专知VIP会员