Gravitational wave science is a pioneering field with rapidly evolving data analysis methodology currently assimilating and inventing deep learning techniques. The bulk of the sophisticated flagship searches of the field rely on the time-tested matched filtering principle within their core. In this paper, we make a key observation on the relationship between the emerging deep learning and the traditional techniques: matched filtering is formally equivalent to a particular neural network. This means that a neural network can be constructed analytically to exactly implement matched filtering, and can be further trained on data or boosted with additional complexity for improved performance. This fundamental equivalence allows us to define a "complexity standard candle" allowing us to characterize the relative complexity of the different approaches to gravitational wave signals in a common framework. Additionally it also provides a glimpse of an intriguing symmetry that could provide clues on how neural networks approach the problem of finding signals in overwhelming noise. Moreover, we show that the proposed neural network architecture can outperform matched filtering, both with or without knowledge of a prior on the parameter distribution. When a prior is given, the proposed neural network can approach the statistically optimal performance. We also propose and investigate two different neural network architectures MNet-Shallow and MNet-Deep, both of which implement matched filtering at initialization and can be trained on data. MNet-Shallow has simpler structure, while MNet-Deep is more flexible and can deal with a wider range of distributions. Our theoretical findings are corroborated by experiments using real LIGO data and synthetic injections. Finally, our results suggest new perspectives on the role of deep learning in gravitational wave detection.
翻译:重力波科学是一个开创性领域,其数据分析方法正在迅速演变,目前正在同化,并发明深层学习技术。 精密的旗舰搜索主要依靠其核心中经过时间测试的匹配过滤原则。 在本文中,我们对新兴深层学习和传统技术之间的关系进行关键观察: 匹配过滤在形式上相当于特定的神经网络。 这意味着神经网络可以通过分析构建, 以精确地实施匹配过滤, 并且可以在数据过滤方面接受进一步的培训, 或提高数据的复杂性, 以便提高性能。 这一基本等同使我们能够定义一个“ 复合标准蜡烛”, 从而让我们能够描述在共同框架内对引力波信号的不同方法的相对复杂性。 此外, 本文还提供了一个令人着眼的对质的对称性能的观察, 神经网络如何在超强的噪音中找到信号的问题。 此外, 我们表明, 拟议的神经网络结构结构可以超越灵活过滤, 无论是对参数分布有了解还是没有了解。 在之前, 给出了“ 精确度”, 拟议神经网络的初始检测和“ 模型”, 也可以在使用“ 分析” 和“ 结构” 两种“ 分析” 分析” 两种“ 的精确结构中,,, 和“ 也可以使用“ 分析” 和“ 分析” 和“ 分析” 两种“ 的“ 的” 的“ 的” 结构” 的“ 的“ 的” 的” 分析” 和“ 的” 两种” 结构” 两种“ 的” 的“,,,, 的” 的”,,, 也可以在深度分析” 和“结构”, 的“,,,,,,,,,,,,,,,,,,,,,,,,, 和“ 和“ 和“ 和“ 的” 的“, 和“ 的“ 的” 的” 的” 的” 的”, 的“ 也可以在“, 和“ ” ”,, 和“ 和“ 的”,