The breakthrough in Deep Learning neural networks has transformed the use of AI and machine learning technologies for the analysis of very large experimental datasets. These datasets are typically generated by large-scale experimental facilities at national laboratories. In the context of science, scientific machine learning focuses on training machines to identify patterns, trends, and anomalies to extract meaningful scientific insights from such datasets. With a new generation of experimental facilities, the rate of data generation and the scale of data volumes will increasingly require the use of more automated data analysis. At present, identifying the most appropriate machine learning algorithm for the analysis of any given scientific dataset is still a challenge for scientists. This is due to many different machine learning frameworks, computer architectures, and machine learning models. Historically, for modelling and simulation on HPC systems such problems have been addressed through benchmarking computer applications, algorithms, and architectures. Extending such a benchmarking approach and identifying metrics for the application of machine learning methods to scientific datasets is a new challenge for both scientists and computer scientists. In this paper, we describe our approach to the development of scientific machine learning benchmarks and review other approaches to benchmarking scientific machine learning.


翻译:深层学习神经网络的突破改变了使用人工智能和机器学习技术分析非常庞大的实验数据集的情况。这些数据集通常由国家实验室的大规模实验设施生成。在科学方面,科学机器学习侧重于培训机器,以辨别模式、趋势和异常现象,从这些数据集中获取有意义的科学见解。随着新一代实验设施的发展,数据生成速度和数据量的规模将日益要求使用更自动化的数据分析。目前,确定用于分析任何特定科学数据集的最适当的机器学习算法,对科学家来说仍然是一项挑战。这是由于许多不同的机器学习框架、计算机架构和机器学习模型。从历史上看,这些问题是通过计算机应用基准、算法和结构来模拟高电电电离层系统的模拟和模拟的。扩大这种基准方法并确定将机器学习方法应用于科学数据集的衡量标准对科学家和计算机科学家来说都是一项新的挑战。我们在本文件中描述了我们开发科学机器学习基准的方法,并审查了为科学机器学习制定基准的其他方法。

0
下载
关闭预览

相关内容

机器学习(Machine Learning)是一个研究计算学习方法的国际论坛。该杂志发表文章,报告广泛的学习方法应用于各种学习问题的实质性结果。该杂志的特色论文描述研究的问题和方法,应用研究和研究方法的问题。有关学习问题或方法的论文通过实证研究、理论分析或与心理现象的比较提供了坚实的支持。应用论文展示了如何应用学习方法来解决重要的应用问题。研究方法论文改进了机器学习的研究方法。所有的论文都以其他研究人员可以验证或复制的方式描述了支持证据。论文还详细说明了学习的组成部分,并讨论了关于知识表示和性能任务的假设。 官网地址:http://dblp.uni-trier.de/db/journals/ml/
【UBC】高级机器学习课程,Advanced Machine Learning
专知会员服务
26+阅读 · 2021年1月26日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
专知会员服务
116+阅读 · 2019年12月24日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
已删除
将门创投
4+阅读 · 2019年11月8日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
人工智能 | SCI期刊专刊/国际会议信息7条
Call4Papers
7+阅读 · 2019年3月12日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Machine Learning:十大机器学习算法
开源中国
21+阅读 · 2018年3月1日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Arxiv
1+阅读 · 2021年12月20日
Arxiv
10+阅读 · 2021年11月10日
AutoML: A Survey of the State-of-the-Art
Arxiv
70+阅读 · 2019年8月14日
VIP会员
相关资讯
已删除
将门创投
4+阅读 · 2019年11月8日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
人工智能 | SCI期刊专刊/国际会议信息7条
Call4Papers
7+阅读 · 2019年3月12日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Machine Learning:十大机器学习算法
开源中国
21+阅读 · 2018年3月1日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Top
微信扫码咨询专知VIP会员