This survey explores the development of adjoint Monte Carlo methods for solving optimization problems governed by kinetic equations, a common challenge in areas such as plasma control and device design. These optimization problems are particularly demanding due to the high dimensionality of the phase space and the randomness in evaluating the objective functional, a consequence of using a forward Monte Carlo solver. To overcome these difficulties, a range of ``adjoint Monte Carlo methods'' have been devised. These methods skillfully combine Monte Carlo gradient estimators with PDE-constrained optimization, introducing innovative solutions tailored for kinetic applications. In this review, we begin by examining three primary strategies for Monte Carlo gradient estimation: the score function approach, the reparameterization trick, and the coupling method. We also delve into the adjoint-state method, an essential element in PDE-constrained optimization. Focusing on applications in the radiative transfer equation and the nonlinear Boltzmann equation, we provide a comprehensive guide on how to integrate Monte Carlo gradient techniques within both the optimize-then-discretize and the discretize-then-optimize frameworks from PDE-constrained optimization. This approach leads to the formulation of effective adjoint Monte Carlo methods, enabling efficient gradient estimation in complex, high-dimensional optimization problems.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年2月27日
Arxiv
0+阅读 · 2024年2月27日
Arxiv
18+阅读 · 2022年11月21日
Arxiv
14+阅读 · 2018年5月15日
Arxiv
28+阅读 · 2017年12月6日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Arxiv
0+阅读 · 2024年2月27日
Arxiv
0+阅读 · 2024年2月27日
Arxiv
18+阅读 · 2022年11月21日
Arxiv
14+阅读 · 2018年5月15日
Arxiv
28+阅读 · 2017年12月6日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员