The modular decomposition of a graph $G$ is a natural construction to capture key features of $G$ in terms of a labeled tree $(T,t)$ whose vertices are labeled as "series" ($1$), "parallel" ($0$) or "prime". However, full information of $G$ is provided by its modular decomposition tree $(T,t)$ only, if $G$ is a cograph, i.e., $G$ does not contain prime modules. In this case, $(T,t)$ explains $G$, i.e., $\{x,y\}\in E(G)$ if and only if the lowest common ancestor $\mathrm{lca}_T(x,y)$ of $x$ and $y$ has label "$1$". Pseudo-cographs, or, more general, GaTEx graphs $G$ are graphs that can be explained by labeled galled-trees, i.e., labeled networks $(N,t)$ that are obtained from the modular decomposition tree $(T,t)$ of $G$ by replacing the prime vertices in $T$ by simple labeled cycles. GaTEx graphs can be recognized and labeled galled-trees that explain these graphs can be constructed in linear time. In this contribution, we provide a novel characterization of GaTEx graphs in terms of a set $\mathfrak{F}_{\mathrm{GT}}$ of 25 forbidden induced subgraphs. This characterization, in turn, allows us to show that GaTEx graphs are closely related to many other well-known graph classes such as $P_4$-sparse and $P_4$-reducible graphs, weakly-chordal graphs, perfect graphs with perfect order, comparability and permutation graphs, murky graphs as well as interval graphs, Meyniel graphs or very strongly-perfect and brittle graphs. Moreover, we show that every GaTEx graph as twin-width at most 1.


翻译:图 $G$ 的模块化分解是一种自然的构造,可以用标记树 $(T,t)$ 来捕捉 $G$ 的关键特征,该标记树的顶点标记为“串联”($1$)、“并联”($0$)或“素算法”。但是,如果 $G$ 是伪图,即 $G$ 不包含素模块,则仅通过其模块化分解树 $(T,t)$ 提供 $G$ 的完整信息。在这种情况下,$(T,t)$ 解释 $G$,即仅当$x$ 和 $y$ 的最近公共祖先 $\mathrm{lca}_T(x,y)$ 具有标记“1”时,$\{x,y\}\in E(G)$。伪图,或更一般的,辫树可解释(GaTEx)图 $G$ 是可以用标记网络 $(N,t)$ 来解释的图,该标记网络是通过用简单标记的环替换 $T$ 中的素算法顶点从 $G$ 的模块化分解树 $(T,t)$ 获得的。可以在线性时间内识别 GaTEx 图,并且可以构造解释这些图的标记辫树。在本文中,我们以 25 个禁止诱导子图的集合 $\mathfrak{F}_{\mathrm{GT}}$ 的形式提供了 GaTEx 图的新特征。反过来,这个特征允许我们展示 GaTEx 图与许多其他著名的图类密切相关,例如 $P_4$ 稀疏和 $P_4$ 可约图、弱弦图、具有完美秩序的完美图、可比和排列图、混浊图、区间图、Meyniel 图或非常强大的完美和脆弱的图。此外,我们还展示每个 GaTEx 图的孪生宽度至多为 1。

0
下载
关闭预览

相关内容

【图神经网络(GNN)结构化数据分析】
专知会员服务
115+阅读 · 2020年3月22日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
图表示学习Graph Embedding综述
AINLP
33+阅读 · 2020年5月17日
【GNN】图神经网络入门之GRN图循环网络
深度学习自然语言处理
17+阅读 · 2020年5月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年6月4日
Arxiv
0+阅读 · 2023年6月2日
Neural Architecture Search without Training
Arxiv
10+阅读 · 2021年6月11日
VIP会员
相关VIP内容
【图神经网络(GNN)结构化数据分析】
专知会员服务
115+阅读 · 2020年3月22日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
图表示学习Graph Embedding综述
AINLP
33+阅读 · 2020年5月17日
【GNN】图神经网络入门之GRN图循环网络
深度学习自然语言处理
17+阅读 · 2020年5月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员