Traditional reactive approach of blacklisting botnets fails to adapt to the rapidly evolving landscape of cyberattacks. An automated and proactive approach to detect and block botnet hosts will immensely benefit the industry. Behavioral analysis of botnet is shown to be effective against a wide variety of attack types. Current works, however, focus solely on analyzing network traffic from and to the bots. In this work we take a different approach of analyzing the chain of commands input by attackers in a compromised host. We have deployed several honeypots to simulate Linux shells and allowed attackers access to the shells to collect a large dataset of commands. We have further developed an automated mechanism to analyze these data. For the automation we have developed a system called CYbersecurity information Exchange with Privacy (CYBEX-P). Finally, we have done a sequential analysis on the dataset to show that we can successfully predict attacker behavior from the shell commands without analyzing network traffic like previous works.
翻译:传统的黑名单肉网被动反应方法无法适应迅速变化的网络攻击环境。 自动和主动的检测和阻塞肉网主机的方法将极大地有益于该行业。 对肉网的行为分析显示,对多种攻击类型的行为分析是有效的。 然而,目前的工作仅侧重于分析生物体的网络流量。 在这项工作中,我们采取了不同的方法来分析攻击者在一个受损的主机中输入的指令链。 我们已经部署了几个蜂窝来模拟Linux炮弹,并允许攻击者进入贝壳来收集大量命令数据集。 我们进一步开发了一个自动化机制来分析这些数据。 为了自动化,我们开发了一个称为Cyber安全信息与隐私交换(CYBEX-P)的系统。 最后,我们对数据集进行了顺序分析,以显示我们能够成功地预测来自炮弹指令的攻击者的行为,而不必像以前的工作那样分析网络流量。