Localization and navigation are basic robotic tasks requiring an accurate and up-to-date map to finish these tasks, with crowdsourced data to detect map changes posing an appealing solution. Collecting and processing crowdsourced data requires low-cost sensors and algorithms, but existing methods rely on expensive sensors or computationally expensive algorithms. Additionally, there is no existing dataset to evaluate point cloud change detection. Thus, this paper proposes a novel framework using low-cost sensors like stereo cameras and IMU to detect changes in a point cloud map. Moreover, we create a dataset and the corresponding metrics to evaluate point cloud change detection with the help of the high-fidelity simulator Unreal Engine 4. Experiments show that our visualbased framework can effectively detect the changes in our dataset.
翻译:本地化和导航是完成这些任务的基本机器人任务,需要准确和最新的地图才能完成这些任务,而众源数据以探测地图变化将构成一个吸引人的解决方案。 收集和处理多方源数据需要低成本的传感器和算法,但现有方法依赖于昂贵的传感器或计算成本昂贵的算法。 此外,没有现有的数据集来评估点云变化探测。 因此,本文件提出一个新的框架,使用低成本传感器,如立体摄像机和IMU来探测点云图的变化。 此外,我们建立了一个数据集和相应的指标,在高纤维模拟器非现实引擎4的帮助下评估点云变化探测。 实验显示,我们的视觉框架能够有效检测到数据集的变化。