Distributed Fiber Optic Sensing (DFOS) is promising for long-range perimeter security, yet practical deployment faces three key obstacles: severe cross-deployment domain shift, scarce or unavailable labels at new sites, and limited within-class coverage even in source deployments. We propose DUPLE, a prototype-based meta-learning framework tailored for cross-deployment DFOS recognition. The core idea is to jointly exploit complementary time- and frequency-domain cues and adapt class representations to sample-specific statistics: (i) a dual-domain learner constructs multi-prototype class representations to cover intra-class heterogeneity; (ii) a lightweight statistical guidance mechanism estimates the reliability of each domain from raw signal statistics; and (iii) a query-adaptive aggregation strategy selects and combines the most relevant prototypes for each query. Extensive experiments on two real-world cross-deployment benchmarks demonstrate consistent improvements over strong deep learning and meta-learning baselines, achieving more accurate and stable recognition under label-scarce target deployments.
翻译:分布式光纤传感(DFOS)在长距离周界安防领域前景广阔,但实际部署面临三个关键障碍:严重的跨部署域偏移、新站点标签稀缺或不可用,以及即使在源部署中类内覆盖范围也有限。我们提出了DUPLE,一个专为跨部署DFOS识别设计的基于原型的元学习框架。其核心思想是联合利用互补的时域和频域线索,并使类表示适应样本特定的统计特性:(i)一个双域学习器构建多原型类表示以覆盖类内异质性;(ii)一个轻量级统计引导机制从原始信号统计中估计每个域的可靠性;(iii)一个查询自适应聚合策略为每个查询选择并组合最相关的原型。在两个真实世界跨部署基准测试上的大量实验表明,相较于强大的深度学习和元学习基线方法,本框架取得了持续的性能提升,在标签稀缺的目标部署下实现了更准确且更稳定的识别。