The quality of patient care associated with diagnostic radiology is proportionate to a physician workload. Segmentation is a fundamental limiting precursor to both diagnostic and therapeutic procedures. Advances in machine learning (ML) aim to increase diagnostic efficiency by replacing a single application with generalized algorithms. The goal of unsupervised anomaly detection (UAD) is to identify potential anomalous regions unseen during training, where convolutional neural network (CNN) based autoencoders (AEs) and variational autoencoders (VAEs) are considered a de facto approach for reconstruction based-anomaly segmentation. The restricted receptive field in CNNs limits the CNN to model the global context. Hence, if the anomalous regions cover large parts of the image, the CNN-based AEs are not capable of bringing a semantic understanding of the image. Meanwhile, vision transformers (ViTs) have emerged as a competitive alternative to CNNs. It relies on the self-attention mechanism that can relate image patches to each other. We investigate in this paper Transformer capabilities in building AEs for the reconstruction-based UAD task to reconstruct a coherent and more realistic image. We focus on anomaly segmentation for brain magnetic resonance imaging (MRI) and present five Transformer-based models while enabling segmentation performance comparable to or superior to state-of-the-art (SOTA) models. The source code is made publicly available on GitHub: https://github.com/ahmedgh970/Transformers_Unsupervised_Anomaly_Segmentation.git.
翻译:与诊断放射有关的病人护理质量与医生的工作量成比例。分解是诊断和治疗程序的基本限制前奏。机器学习(ML)的进展旨在通过以通用算法取代单一应用来提高诊断效率。未经监督的异常检测(UAD)的目标是查明在培训期间看不到的潜在异常区域,在这些区域,以自动神经仪(AEs)和可变自动自动解析器(VAEs)为基础的神经网络(CNN)被认为是基于异常分解的重建事实上的一种方法。CNN的有限接受字段限制CNN的接收功能使CNN无法模拟全球背景。因此,如果异常区域覆盖图像的大部分部分,基于CNN的AE(UAAD)无法对图像带来语义上的理解。与此同时,视觉变异端器(CNN)已成为CNNS的竞争性替代方法。它依赖于能够将图像补接合于彼此的自读机制。我们在这个纸质变异端机制中调查了用于重建基于UADA的A-E-AD-O-S-S-S-S-S-Silable systemal-commal-comstanlation Syal-commagial-Syal-Syal-Syal-Syal-Syal-Syal-Sylational-Syal-Sylational-Syal-Syal-Sylgal-Sylational-S-S-S-S-S-S-S-S-Syal-s-s-Symadal-smliviolvical-Syal-Syal-Symaxal-s-Syal-s-s-Syal-s-s-s-s-Syl-s-s-s-s-Syal-S-s-s-S-S-S-Syal-S-S-smmal-smmmmaldal-Syal-Syal-Syal-Syal-Syal-s-Sl-s-s-s-Sl-Sl-S-S-Sl-Syal-Syal-Syal-Sl-Sl-Sl-S-