The Internet of Vehicles (IoV) enables real-time data exchange among vehicles and roadside units and thus provides a promising solution to alleviate traffic jams in the urban area. Meanwhile, better traffic management via efficient traffic light control can benefit the IoV as well by enabling a better communication environment and decreasing the network load. As such, IoV and efficient traffic light control can formulate a virtuous cycle. Edge computing, an emerging technology to provide low-latency computation capabilities at the edge of the network, can further improve the performance of this cycle. However, while the collected information is valuable, an efficient solution for better utilization and faster feedback has yet to be developed for edge-empowered IoV. To this end, we propose a Decentralized Reinforcement Learning at the Edge for traffic light control in the IoV (DRLE). DRLE exploits the ubiquity of the IoV to accelerate the collection of traffic data and its interpretation towards alleviating congestion and providing better traffic light control. DRLE operates within the coverage of the edge servers and uses aggregated data from neighboring edge servers to provide city-scale traffic light control. DRLE decomposes the highly complex problem of large area control. into a decentralized multi-agent problem. We prove its global optima with concrete mathematical reasoning. The proposed decentralized reinforcement learning algorithm running at each edge node adapts the traffic lights in real time. We conduct extensive evaluations and demonstrate the superiority of this approach over several state-of-the-art algorithms.


翻译:车辆互联网(IoV)使得车辆和路边单位能够实时交换数据,从而提供一个有希望的解决方案,缓解城市地区交通阻塞。与此同时,通过高效的交通灯控制改善交通管理,既能改善通信环境,又能减少网络负荷,从而有利于互联网管理。因此,IoV和高效的交通灯控制可以形成一个良性循环。电算是一种新兴技术,在网络边缘提供低纬度计算能力,可以进一步改善这一循环的绩效。然而,虽然所收集的信息是有价值的,但是,尚未为边缘服务器开发一个高效的更好利用和更快反馈的高效解决方案,以提供精准的交通阻塞。为此,我们提议在Edge进行分散的强化学习,以便在IoV(DRLE)进行交通灯控制。DRLE利用IV的广度,加速收集交通数据及其解释,以缓解拥挤状况,提供更好的交通灯光控制。DRLE在边缘服务器的覆盖范围内运作,并使用近端服务器的汇总数据,以提供市边际交通灯的光控制。为此,我们提议在高层次上进行高分级的升级的升级的升级的数学控制。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
【MIT】反偏差对比学习,Debiased Contrastive Learning
专知会员服务
90+阅读 · 2020年7月4日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
5+阅读 · 2018年4月22日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员