Depth maps captured with commodity sensors are often of low quality and resolution; these maps need to be enhanced to be used in many applications. State-of-the-art data-driven methods of depth map super-resolution rely on registered pairs of low- and high-resolution depth maps of the same scenes. Acquisition of real-world paired data requires specialized setups. Another alternative, generating low-resolution maps from high-resolution maps by subsampling, adding noise and other artificial degradation methods, does not fully capture the characteristics of real-world low-resolution images. As a consequence, supervised learning methods trained on such artificial paired data may not perform well on real-world low-resolution inputs. We consider an approach to depth map enhancement based on learning from unpaired data. While many techniques for unpaired image-to-image translation have been proposed, most are not directly applicable to depth maps. We propose an unpaired learning method for simultaneous depth enhancement and super-resolution, which is based on a learnable degradation model and surface normal estimates as features to produce more accurate depth maps. We demonstrate that our method outperforms existing unpaired methods and performs on par with paired methods on a new benchmark for unpaired learning that we developed.
翻译:用商品传感器绘制的深度图往往质量低,分辨率低;这些地图需要改进,以便在许多应用中加以使用; 最先进的数据驱动的深度地图超级分辨率方法取决于同一场景的低分辨率和高分辨率地图; 获取真实世界配对数据需要专门设置; 另一种替代办法,通过子取样、添加噪音和其他人工降解方法从高分辨率地图产生低分辨率地图,不能充分捕捉真实世界低分辨率图像的特性。 因此,在这种人工配对数据方面受过培训的受监督的学习方法在真实世界低分辨率投入方面可能无法很好地发挥作用。 我们考虑采用一种方法,在从未偏差数据中学习的基础上进行深度地图改进。 虽然提出了许多未偏差的图像到图像翻译技术,但大多数技术并不直接适用于深度地图。 我们提出了一种用于同步深度增强和超分辨率的不偏差学习方法,该方法以可学习的降解模型和表面正常估计为基础,作为制作更精确深度地图的特征。 我们证明,我们所采用的方法比我们所开发的不精确的不匹配的新方法要高,我们用新的基准方法来学习新的不匹配的方法。