Recent interest in on-orbit servicing and Active Debris Removal (ADR) missions have driven the need for technologies to enable non-cooperative rendezvous manoeuvres. Such manoeuvres put heavy burden on the perception capabilities of a chaser spacecraft. This paper demonstrates Convolutional Neural Networks (CNNs) capable of providing an initial coarse pose estimation of a target from a passive thermal infrared camera feed. Thermal cameras offer a promising alternative to visible cameras, which struggle in low light conditions and are susceptible to overexposure. Often, thermal information on the target is not available a priori; this paper therefore proposes using visible images to train networks. The robustness of the models is demonstrated on two different targets, first on synthetic data, and then in a laboratory environment for a realistic scenario that might be faced during an ADR mission. Given that there is much concern over the use of CNN in critical applications due to their black box nature, we use innovative techniques to explain what is important to our network and fault conditions.
翻译:最近对在轨维修和主动清除碎片(ADR)飞行任务的兴趣促使人们需要技术,以便能够进行不合作的会合演习,这种演习给追逐者航天器的感知能力带来了沉重的负担。本文展示了能够提供初步粗略的被动红外红外摄像头对目标的预测的进化神经网络(CNNs),热照相机为在低光条件下挣扎并易被过度暴露的可见照相机提供了很有希望的替代物。通常没有关于目标的热信息;本文因此建议使用可见图像来培训网络。模型的坚固性表现在两个不同的目标上,首先是合成数据,然后在实验室环境中展示出一个在ADR飞行任务中可能面临的现实情景。鉴于CNN的黑盒性质,我们非常担心在关键应用中使用CNN,因此使用创新技术来解释对我们的网络和错误条件的重要性。