Anomaly detection is concerned with a wide range of applications such as fault detection, system monitoring, and event detection. Identifying anomalies from metering data obtained from smart metering system is a critical task to enhance reliability, stability, and efficiency of the power system. This paper presents an anomaly detection process to find outliers observed in the smart metering system. In the proposed approach, bi-directional long short-term memory (BiLSTM) based autoencoder is used and finds the anomalous data point. It calculates the reconstruction error through autoencoder with the non-anomalous data, and the outliers to be classified as anomalies are separated from the non-anomalous data by predefined threshold. Anomaly detection method based on the BiLSTM autoencoder is tested with the metering data corresponding to 4 types of energy sources electricity/water/heating/hot water collected from 985 households.
翻译:异常探测涉及各种应用,如故障检测、系统监测和事件检测等。从智能计量系统获得的计量数据中找出异常现象,是提高电源系统的可靠性、稳定性和效率的关键任务。本文介绍了一个异常探测过程,以发现智能计量系统中观察到的离子。在拟议方法中,使用双向长短期内存(BILSTM)以自动编码器为基础的双向短期内存(BILSTM),并找到异常数据点。它用非异常数据通过自动编码器计算重建错误,并将外端数据分类为按预定阈值与非异常数据分开。根据BILSTM自动编码器进行的异常探测方法,用从985户收集的4种能源源电/水/热/热水/热水的计量数据进行测试。