Anomaly detection is concerned with a wide range of applications such as fault detection, system monitoring, and event detection. Identifying anomalies from metering data obtained from smart metering system is a critical task to enhance reliability, stability, and efficiency of the power system. This paper presents an anomaly detection process to find outliers observed in the smart metering system. In the proposed approach, bi-directional long short-term memory (BiLSTM) based autoencoder is used and finds the anomalous data point. It calculates the reconstruction error through autoencoder with the non-anomalous data, and the outliers to be classified as anomalies are separated from the non-anomalous data by predefined threshold. Anomaly detection method based on the BiLSTM autoencoder is tested with the metering data corresponding to 4 types of energy sources electricity/water/heating/hot water collected from 985 households.


翻译:异常探测涉及各种应用,如故障检测、系统监测和事件检测等。从智能计量系统获得的计量数据中找出异常现象,是提高电源系统的可靠性、稳定性和效率的关键任务。本文介绍了一个异常探测过程,以发现智能计量系统中观察到的离子。在拟议方法中,使用双向长短期内存(BILSTM)以自动编码器为基础的双向短期内存(BILSTM),并找到异常数据点。它用非异常数据通过自动编码器计算重建错误,并将外端数据分类为按预定阈值与非异常数据分开。根据BILSTM自动编码器进行的异常探测方法,用从985户收集的4种能源源电/水/热/热水/热水的计量数据进行测试。

0
下载
关闭预览

相关内容

在数据挖掘中,异常检测(英语:anomaly detection)对不符合预期模式或数据集中其他项目的项目、事件或观测值的识别。通常异常项目会转变成银行欺诈、结构缺陷、医疗问题、文本错误等类型的问题。异常也被称为离群值、新奇、噪声、偏差和例外。 特别是在检测滥用与网络入侵时,有趣性对象往往不是罕见对象,但却是超出预料的突发活动。这种模式不遵循通常统计定义中把异常点看作是罕见对象,于是许多异常检测方法(特别是无监督的方法)将对此类数据失效,除非进行了合适的聚集。相反,聚类分析算法可能可以检测出这些模式形成的微聚类。 有三大类异常检测方法。[1] 在假设数据集中大多数实例都是正常的前提下,无监督异常检测方法能通过寻找与其他数据最不匹配的实例来检测出未标记测试数据的异常。监督式异常检测方法需要一个已经被标记“正常”与“异常”的数据集,并涉及到训练分类器(与许多其他的统计分类问题的关键区别是异常检测的内在不均衡性)。半监督式异常检测方法根据一个给定的正常训练数据集创建一个表示正常行为的模型,然后检测由学习模型生成的测试实例的可能性。
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
异常检测(Anomaly Detection)综述
极市平台
19+阅读 · 2020年10月24日
异常检测论文大列表:方法、应用、综述
专知
125+阅读 · 2019年7月15日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2022年2月3日
Arxiv
4+阅读 · 2019年5月1日
q-Space Novelty Detection with Variational Autoencoders
VIP会员
相关VIP内容
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
相关资讯
异常检测(Anomaly Detection)综述
极市平台
19+阅读 · 2020年10月24日
异常检测论文大列表:方法、应用、综述
专知
125+阅读 · 2019年7月15日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员