The increasing sophistication of cyber threats has necessitated the development of advanced detection mechanisms capable of identifying malicious activities with high precision and efficiency. A novel approach, termed Autonomous Feature Resonance, is introduced to address the limitations of traditional ransomware detection methods through the analysis of entropy-based feature interactions within system processes. The proposed method achieves an overall detection accuracy of 97.3\%, with false positive and false negative rates of 1.8\% and 2.1\%, respectively, outperforming existing techniques such as signature-based detection and behavioral analysis. Its decentralized architecture enables local processing of data, reducing latency and improving scalability, while a self-learning mechanism ensures continuous adaptation to emerging threats. Experimental results demonstrate consistent performance across diverse ransomware families, including LockBit 3.0, BlackCat, and Royal, with low detection latency and efficient resource utilization. The method's reliance on entropy as a distinguishing feature provides robustness against obfuscation techniques, making it suitable for real-time deployment in high-throughput environments. These findings highlight the potential of entropy-based approaches to enhance cybersecurity frameworks, offering a scalable and adaptive solution for modern ransomware detection challenges.
翻译:暂无翻译