We consider a set-valued online prediction problem in the context of network caching. Assume that multiple users are connected to several caches via a bipartite network. At any time slot, each user requests an arbitrary file chosen from a large catalog. A user's request at a slot is met if the requested file is cached in at least one of the caches connected to the user. Our objective is to predict, prefetch, and optimally distribute the files on the caches to maximize the total number of cache hits in an online setting. The problem is non-trivial due to the non-convex and non-smooth nature of the objective function. In this paper, we propose $\texttt{LeadCache}$ - an online caching policy based on the Follow-the-Perturbed-Leader paradigm. We show that the policy is regret-optimal up to a factor of $\tilde{O}(n^{3/8}),$ where $n$ is the number of users. We design two efficient implementations of the $\texttt{LeadCache}$ policy, one based on Pipage rounding and the other based on Madow's sampling, each of which makes precisely one call to an LP-solver per iteration. With a Strong-Law-type assumption, we show that the total number of file fetches under $\texttt{LeadCache}$ remains almost surely finite over an infinite horizon. Finally, we derive a tight regret lower bound using results from graph coloring. We conclude that the learning-based $\texttt{LeadCache}$ policy decisively outperforms the known caching policies both theoretically and empirically.


翻译:在网络缓存的背景下, 我们考虑一个设定价值的在线预测问题 。 假设多个用户通过双边网络连接到多个缓存。 在任何时间段, 每个用户都会要求从大型目录中选择任意的文件 。 如果请求的文件在至少一个与用户连接的缓存中被缓存到至少一个缓存中, 用户的要求得到满足 。 我们的目标是预测、 预发并优化地分配缓存上的文件, 以在网络设置中最大限度地增加缓存点击的总数 。 问题在于目标功能的非convex 和非mooth 性质, 问题在于非三端 。 在本文中, 我们提议 $\ t{ liadCachase} 。 如果请求的用户在至少一个缓存中隐藏在与用户连接的缓存中, 则满足了一个在线缓存政策 。 我们的目标是预测、 预略 并优化缓存到 $$$@ $ (n_ 3/8} 美元,, 美元是用户人数。 我们设计了两个高效的 $\ text deal deal deal deal deal) 政策, max max 。

0
下载
关闭预览

相关内容

【NeurIPS2020-MIT】子图神经网络,Subgraph Neural Networks
专知会员服务
45+阅读 · 2020年9月28日
专知会员服务
123+阅读 · 2020年9月8日
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
154+阅读 · 2020年5月26日
专知会员服务
159+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
中文自然语言处理数据集:ChineseNLPCorpus
AINLP
33+阅读 · 2019年6月21日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
lightgbm algorithm case of kaggle(上)
R语言中文社区
8+阅读 · 2018年3月20日
【推荐】树莓派/OpenCV/dlib人脸定位/瞌睡检测
机器学习研究会
9+阅读 · 2017年10月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年9月5日
VIP会员
相关VIP内容
【NeurIPS2020-MIT】子图神经网络,Subgraph Neural Networks
专知会员服务
45+阅读 · 2020年9月28日
专知会员服务
123+阅读 · 2020年9月8日
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
154+阅读 · 2020年5月26日
专知会员服务
159+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
相关资讯
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
中文自然语言处理数据集:ChineseNLPCorpus
AINLP
33+阅读 · 2019年6月21日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
lightgbm algorithm case of kaggle(上)
R语言中文社区
8+阅读 · 2018年3月20日
【推荐】树莓派/OpenCV/dlib人脸定位/瞌睡检测
机器学习研究会
9+阅读 · 2017年10月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员