The human-robot interaction (HRI) community has developed many methods for robots to navigate safely and socially alongside humans. However, experimental procedures to evaluate these works are usually constructed on a per-method basis. Such disparate evaluations make it difficult to compare the performance of such methods across the literature. To bridge this gap, we introduce SocNavBench, a simulation framework for evaluating social navigation algorithms. SocNavBench comprises a simulator with photo-realistic capabilities and curated social navigation scenarios grounded in real-world pedestrian data. We also provide an implementation of a suite of metrics to quantify the performance of navigation algorithms on these scenarios. Altogether, SocNavBench provides a test framework for evaluating disparate social navigation methods in a consistent and interpretable manner. To illustrate its use, we demonstrate testing three existing social navigation methods and a baseline method on SocNavBench, showing how the suite of metrics helps infer their performance trade-offs. Our code is open-source, allowing the addition of new scenarios and metrics by the community to help evolve SocNavBench to reflect advancements in our understanding of social navigation.
翻译:人类-机器人互动(HRI)社区为机器人安全地和在社会上与人类一起航行开发了许多方法,然而,评估这些工程的实验程序通常是在每种方法的基础上构建的。这种不同的评估使得难以在各种文献中比较这些方法的性能。为了缩小这一差距,我们引入了SocNavBench,这是一个用于评价社会导航算法的模拟框架。SocNavBench包含一个具有摄影现实能力和基于现实世界行人数据的调整社会导航情景的模拟器。我们还提供了一套衡量标准,用以量化这些情景的导航算法的性能。总的来说,SocNavBench提供了一个测试框架,用来以一致和可解释的方式评估不同社会导航方法的性能。为了说明其使用情况,我们演示了三种现有的社会导航方法和SocNavBench的基线方法,展示了这套计量标准如何帮助推算出其性能的权衡。我们的代码是开源的,允许社区增加新的假设和计量标准,以帮助SocNavBench 来反映我们社会导航中的进展。