Over the years, population protocols with the goal of reaching consensus have been studied in great depth. However, many systems in the real-world do not result in all agents eventually reaching consensus, but rather in the opposite: they converge to a state of rich diversity. Consider for example task allocation in ants. If eventually all ants perform the same task, then the colony will perish (lack of food, no brood care, etc.). Then, it is vital for the survival of the colony to have a diverse set of tasks and enough ants working on each task. What complicates matters is that ants need to switch tasks periodically to adjust the needs of the colony; e.g., when too many foragers fell victim to other ant colonies. Moreover, all tasks are equally important and maybe they need to keep certain proportions in the distribution of the task. How can ants keep a healthy and balanced allocation of tasks? To answer this question, we propose a simple population protocol for $n$ agents on a complete graph and an arbitrary initial distribution of $k$ colours (tasks). We assume that each colour $i$ has an associated weight (importance) $w_i \geq 1$. By denoting $w$ as the sum of the weights of different colours, we show that the protocol converges in $O(w^2 n \log n)$ rounds to a configuration where the number of agents supporting each colour $i$ is concentrated on the fair share $w_in/w$ and will stay concentrated for a large number of rounds, w.h.p. Our protocol has many interesting properties: agents do not need to know other colours and weights in the system, and our protocol requires very little memory per agent. Furthermore, the protocol guarantees fairness meaning that over a long period each agent has each colour roughly a number of times proportional to the weight of the colour. Finally, our protocol also fulfils sustainability meaning that no colour ever vanishes.


翻译:多年来,人们已经深入地研究了人口协议,目的是达成共识。然而,现实世界中的许多系统并没有导致所有代理人最终达成共识,而是相反的:它们会聚集到一个丰富多样的状态。例如,在蚂蚁中分配任务。如果最终所有蚂蚁都执行同样的任务,那么蚁群就会消亡(缺乏食物,没有溴的护理,等等)。然后,对于殖民地的生存来说,拥有一套多样的任务和足够的蚂蚁在每项任务中工作。使问题复杂化的是,蚂蚁们需要定期转换任务来调整殖民地的需求;例如,当太多的蚂蚁们成为其他蚁蚁群的受害者时,它们就会聚集在一起。此外,所有任务都同样重要,也许它们需要一定比例地分配任务。蚂蚁们如何保持一个健康和平衡的任务分配?为了回答这个问题,我们提议一个简单的人口协议,在完整的图表上为$n的代理人设置一个简单的人口协议,然后任意地在最初分配美元(塔克斯)的颜色。我们假设每个颜色的值都有一定的值的重量,每个颜色的重量,每个颜色的重量的重量的重量,每个的重量都是我们的颜色的重量,每个的重量需要一个颜色的重量。

0
下载
关闭预览

相关内容

专知会员服务
17+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年7月29日
Arxiv
4+阅读 · 2019年12月2日
VIP会员
相关VIP内容
专知会员服务
17+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员