We present a planning and control framework for physics-based manipulation under uncertainty. The key idea is to interleave robust open-loop execution with closed-loop control. We derive robustness metrics through contraction theory. We use these metrics to plan trajectories that are robust to both state uncertainty and model inaccuracies. However, fully robust trajectories are extremely difficult to find or may not exist for many multi-contact manipulation problems. We separate a trajectory into robust and non-robust segments through a minimum cost path search on a robustness graph. Robust segments are executed open-loop and non-robust segments are executed with model-predictive control. We conduct experiments on a real robotic system for reaching in clutter. Our results suggest that the open and closed-loop approach results in up to 35% more real-world success compared to open-loop baselines and a 40% reduction in execution time compared to model-predictive control. We show for the first time that partially open-loop manipulation plans generated with our approach reach similar success rates to model-predictive control, while achieving a more fluent/real-time execution. A video showing real-robot executions can be found at https://youtu.be/rPOPCwHfV4g.
翻译:我们为基于物理的操作提供了一个不确定的规划和控制框架。 关键的想法是通过封闭环控将稳健的开放环执行与封闭环控制相隔开来。 我们通过收缩理论获得稳健度度量度; 我们使用这些量度来规划对州不确定性和模型不准确性都具有稳健性的轨迹。 但是, 完全稳健的轨迹极难找到, 或对于许多多接触操纵问题来说可能不存在。 我们通过在稳健的图形上进行最低成本路径搜索, 将轨迹分为强健和非沸流部分。 我们用模型预设控制的方式执行robust部分。 我们用一个真正的机器人系统进行实验, 以达到全局。 我们的结果表明, 开放和封闭环行方法的结果是, 与开放环行基线相比, 实际成功率高达35 % 以上, 执行时间则比模型前置控制减少40%。 我们第一次发现, 与我们的方法产生的部分开放环操作计划达到类似的成功率, 并且实现了模型- 预设控制 。 我们的视频- PO- PROV 能够实现真正的执行。 在更多的视频- PROVD- PRO- PRO- PRO 。