This work aims to assess the reality and feasibility of the adversarial attack against cardiac diagnosis system powered by machine learning algorithms. To this end, we introduce adversarial beats, which are adversarial perturbations tailored specifically against electrocardiograms (ECGs) beat-by-beat classification system. We first formulate an algorithm to generate adversarial examples for the ECG classification neural network model, and study its attack success rate. Next, to evaluate its feasibility in a physical environment, we mount a hardware attack by designing a malicious signal generator which injects adversarial beats into ECG sensor readings. To the best of our knowledge, our work is the first in evaluating the proficiency of adversarial examples for ECGs in a physical setup. Our real-world experiments demonstrate that adversarial beats successfully manipulated the diagnosis results 3-5 times out of 40 attempts throughout the course of 2 minutes. Finally, we discuss the overall feasibility and impact of the attack, by clearly defining motives and constraints of expected attackers along with our experimental results.


翻译:这项工作旨在评估对以机器学习算法驱动的心脏诊断系统进行对抗性攻击的现实和可行性。 为此,我们引入了对抗性攻击,这是专门针对心电图(ECGs)挨打分类系统的对抗性干扰。我们首先开发了一种算法,为ECG神经网络分类模型生成对抗性例子,并研究其攻击成功率。接下来,为了评估其在物理环境中的可行性,我们设计了一个恶意信号生成器,将对抗性攻击打入ECG传感器读数。据我们所知,我们的工作是第一个在物理构造中评价ECGs对抗性例子的熟练程度的工作。我们的现实世界实验表明,在2分钟的40次尝试中,对抗性攻击成功操纵了诊断结果3-5次。最后,我们通过明确界定预期攻击者的动机和限制以及我们的实验结果来讨论攻击的总体可行性和影响。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
数据科学导论,54页ppt,Introduction to Data Science
专知会员服务
41+阅读 · 2020年7月27日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
48+阅读 · 2020年7月4日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
NIPS 2017:贝叶斯深度学习与深度贝叶斯学习(讲义+视频)
机器学习研究会
36+阅读 · 2017年12月10日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Arxiv
0+阅读 · 2021年10月12日
Arxiv
12+阅读 · 2020年12月10日
Arxiv
4+阅读 · 2018年4月30日
Arxiv
4+阅读 · 2015年3月20日
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
数据科学导论,54页ppt,Introduction to Data Science
专知会员服务
41+阅读 · 2020年7月27日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
48+阅读 · 2020年7月4日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
NIPS 2017:贝叶斯深度学习与深度贝叶斯学习(讲义+视频)
机器学习研究会
36+阅读 · 2017年12月10日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Top
微信扫码咨询专知VIP会员