Classical gradient-based density topology optimization is adapted for method-of-moments numerical modeling to design a conductor-based system attaining the minimal antenna Q-factor evaluated via an energy stored operator. Standard topology optimization features are discussed, e.g., the interpolation scheme and density and projection filtering. The performance of the proposed technique is demonstrated in a few examples in terms of the realized Q-factor values and necessary computational time to obtain a design. The optimized designs are compared to the fundamental bound and well-known empirical structures. The presented framework can provide a completely novel design, as presented in the second example.
翻译:暂无翻译