In this paper, we establish global non-asymptotic convergence guarantees for the BFGS quasi-Newton method without requiring strong convexity or the Lipschitz continuity of the gradient or Hessian. Instead, we consider the setting where the objective function is strictly convex and strongly self-concordant. For an arbitrary initial point and any arbitrary positive-definite initial Hessian approximation, we prove global linear and superlinear convergence guarantees for BFGS when the step size is determined using a line search scheme satisfying the weak Wolfe conditions. Moreover, all our global guarantees are affine-invariant, with the convergence rates depending solely on the initial error and the strongly self-concordant constant. Our results extend the global non-asymptotic convergence theory of BFGS beyond traditional assumptions and, for the first time, establish affine-invariant convergence guarantees aligning with the inherent affine invariance of the BFGS method.
翻译:本文针对BFGS拟牛顿法建立了全局非渐近收敛性保证,无需梯度或Hessian矩阵的强凸性或Lipschitz连续性假设。我们考虑目标函数严格凸且强自协调的情形。对于任意初始点及任意正定初始Hessian近似矩阵,我们证明了当步长通过满足弱Wolfe条件的线搜索策略确定时,BFGS方法具有全局线性与超线性收敛保证。此外,所有全局收敛保证均具有仿射不变性,其收敛速率仅取决于初始误差与强自协调常数。我们的研究将BFGS的全局非渐近收敛理论拓展至传统假设之外,并首次建立了与BFGS方法固有仿射不变性相一致的仿射不变收敛保证。