Topological Data Analysis (TDA) has emerged recently as a robust tool to extract and compare the structure of datasets. TDA identifies features in data such as connected components and holes and assigns a quantitative measure to these features. Several studies reported that topological features extracted by TDA tools provide unique information about the data, discover new insights, and determine which feature is more related to the outcome. On the other hand, the overwhelming success of deep neural networks in learning patterns and relationships has been proven on a vast array of data applications, images in particular. To capture the characteristics of both powerful tools, we propose \textit{TDA-Net}, a novel ensemble network that fuses topological and deep features for the purpose of enhancing model generalizability and accuracy. We apply the proposed \textit{TDA-Net} to a critical application, which is the automated detection of COVID-19 from CXR images. The experimental results showed that the proposed network achieved excellent performance and suggests the applicability of our method in practice.


翻译:最近,地形数据分析(TDA)成为提取和比较数据集结构的有力工具。TDA查明了数据中的特征,例如连接部件和孔,并指定了对这些特征的定量测量。一些研究报告说,TDA工具提取的地形特征提供了有关数据的独特信息,发现了新的洞察力,并确定了哪些特征与结果更为相关。另一方面,深层神经网络在学习模式和关系方面的巨大成功在大量数据应用中得到了证明,特别是图像。为了捕捉这两个强大的工具的特征,我们提议了\textit{TDA-Net},这是一个新型的连带网络,将表层和深度特征结合起来,以加强模型的通用性和准确性。我们将提议的\textit{TDA-Net}应用于一个关键应用程序,即从CXR图像中自动检测COVID-19。实验结果表明,拟议的网络取得了出色的业绩,并表明我们的方法在实践中的适用性。

0
下载
关闭预览

相关内容

可解释强化学习,Explainable Reinforcement Learning: A Survey
专知会员服务
129+阅读 · 2020年5月14日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
论文笔记之Feature Selective Networks for Object Detection
统计学习与视觉计算组
21+阅读 · 2018年7月26日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Deep Reinforcement Learning 深度增强学习资源
数据挖掘入门与实战
7+阅读 · 2017年11月4日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Deep Learning for Deepfakes Creation and Detection
Arxiv
6+阅读 · 2019年9月25日
Deep Learning for Generic Object Detection: A Survey
Arxiv
13+阅读 · 2018年9月6日
Arxiv
11+阅读 · 2018年7月31日
VIP会员
相关VIP内容
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
论文笔记之Feature Selective Networks for Object Detection
统计学习与视觉计算组
21+阅读 · 2018年7月26日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Deep Reinforcement Learning 深度增强学习资源
数据挖掘入门与实战
7+阅读 · 2017年11月4日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Top
微信扫码咨询专知VIP会员