Question Answering (QA) is a growing area of research, often used to facilitate the extraction of information from within documents. State-of-the-art QA models are usually pre-trained on domain-general corpora like Wikipedia and thus tend to struggle on out-of-domain documents without fine-tuning. We demonstrate that synthetic domain-specific datasets can be generated easily using domain-general models, while still providing significant improvements to QA performance. We present two new tools for this task: A flexible pipeline for validating the synthetic QA data and training downstream models on it, and an online interface to facilitate human annotation of this generated data. Using this interface, crowdworkers labelled 1117 synthetic QA pairs, which we then used to fine-tune downstream models and improve domain-specific QA performance by 8.75 F1.


翻译:问题解答(QA)是一个日益扩大的研究领域,通常用于便利从文件内提取信息。最先进的质量解答模式通常在Wikipedia这样的一般领域公司接受预先培训,因此往往在不作微调的情况下在外部文件上挣扎。我们证明,合成特定领域数据集可以很容易地使用一般领域模型生成,同时仍然为质量解答绩效提供重大改进。我们为此任务提出了两个新工具:验证合成质量解析数据和培训下游模型的灵活管道,以及便利人类对产生的数据进行批注的在线界面。我们利用这一界面,众工标有1117个合成质量解析配对,然后我们用这些对来微调下游模型,并在8.75 F1之前改进特定领域的质量解析性能。

0
下载
关闭预览

相关内容

自动问答(Question Answering, QA)是指利用计算机自动回答用户所提出的问题以满足用户知识需求的任务。不同于现有搜索引擎,问答系统是信息服务的一种高级形式,系统返回用户的不再是基于关键词匹配排序的文档列表,而是精准的自然语言答案。近年来,随着人工智能的飞速发展,自动问答已经成为倍受关注且发展前景广泛的研究方向。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
Linux导论,Introduction to Linux,96页ppt
专知会员服务
82+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关VIP内容
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员