Question Answering (QA) is a growing area of research, often used to facilitate the extraction of information from within documents. State-of-the-art QA models are usually pre-trained on domain-general corpora like Wikipedia and thus tend to struggle on out-of-domain documents without fine-tuning. We demonstrate that synthetic domain-specific datasets can be generated easily using domain-general models, while still providing significant improvements to QA performance. We present two new tools for this task: A flexible pipeline for validating the synthetic QA data and training downstream models on it, and an online interface to facilitate human annotation of this generated data. Using this interface, crowdworkers labelled 1117 synthetic QA pairs, which we then used to fine-tune downstream models and improve domain-specific QA performance by 8.75 F1.
翻译:问题解答(QA)是一个日益扩大的研究领域,通常用于便利从文件内提取信息。最先进的质量解答模式通常在Wikipedia这样的一般领域公司接受预先培训,因此往往在不作微调的情况下在外部文件上挣扎。我们证明,合成特定领域数据集可以很容易地使用一般领域模型生成,同时仍然为质量解答绩效提供重大改进。我们为此任务提出了两个新工具:验证合成质量解析数据和培训下游模型的灵活管道,以及便利人类对产生的数据进行批注的在线界面。我们利用这一界面,众工标有1117个合成质量解析配对,然后我们用这些对来微调下游模型,并在8.75 F1之前改进特定领域的质量解析性能。