Transfer Learning enables Convolutional Neural Networks (CNN) to acquire knowledge from a source domain and transfer it to a target domain, where collecting large-scale annotated examples is both time-consuming and expensive. Conventionally, while transferring the knowledge learned from one task to another task, the deeper layers of a pre-trained CNN are finetuned over the target dataset. However, these layers that are originally designed for the source task are over-parameterized for the target task. Thus, finetuning these layers over the target dataset reduces the generalization ability of the CNN due to high network complexity. To tackle this problem, we propose a two-stage framework called TASCNet which enables efficient knowledge transfer. In the first stage, the configuration of the deeper layers is learned automatically and finetuned over the target dataset. Later, in the second stage, the redundant filters are pruned from the fine-tuned CNN to decrease the network's complexity for the target task while preserving the performance. This two-stage mechanism finds a compact version of the pre-trained CNN with optimal structure (number of filters in a convolutional layer, number of neurons in a dense layer, and so on) from the hypothesis space. The efficacy of the proposed method is evaluated using VGG-16, ResNet-50, and DenseNet-121 on CalTech-101, CalTech-256, and Stanford Dogs datasets. The proposed TASCNet reduces the computational complexity of pre-trained CNNs over the target task by reducing both trainable parameters and FLOPs which enables resource-efficient knowledge transfer.
翻译:革命神经网络(CNN)能够从源域获取知识,并将知识传输到目标域,因为收集大规模附加说明的例子既耗时又费钱。 常规上,在将从一项任务学到的知识转移到另一项任务的同时,对经过预先训练的CNN的更深层部分对目标数据集进行微调,然而,最初为源任务设计的这些层为目标任务设计过宽的分界线。因此,在目标数据集上对这些层进行微调,降低了CNN的普及能力,因为网络复杂程度很高。为了解决这一问题,我们提议了一个名为TASCN的两阶段框架,称为TASCN,使有效的知识转移成为可能。在第一阶段,从一项任务中自动学习更深层的配置,对目标数据集进行细调。在第二阶段,从经过精调的CNNFNP到降低目标任务的复杂性,同时保留性能。这个两阶段机制发现有最优结构的CN前培训型CN的精密版本(CR的过滤器数量)、T101级级级的T-101级的递增量,以及使用提议的ST-SIMFGIS-S-S-S-S-IL数据层和RE-real-vial-vical-vial-vil-I-vial-vial-vial-vial-vial-vil-vil-vil-vil-vil-vial-vil-vil-vil-vil-vil-vil-vial-vil-de-de-de-de-de-de-de-de-deal-deal-deal-deal-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-