Recent advancements in Large Language Model (LLM)-based Natural Language Generation evaluation have largely focused on single-example prompting, resulting in significant token overhead and computational inefficiencies. In this work, we introduce BatchGEMBA-MQM, a framework that integrates batched prompting with the GEMBA-MQM metric for machine translation evaluation. Our approach aggregates multiple translation examples into a single prompt, reducing token usage by 2-4 times (depending on the batch size) relative to single-example prompting. Furthermore, we propose a batching-aware prompt compression model that achieves an additional token reduction of 13-15% on average while also showing ability to help mitigate batching-induced quality degradation. Evaluations across several LLMs (GPT-4o, GPT-4o-mini, Mistral Small, Phi4, and CommandR7B) and varying batch sizes reveal that while batching generally negatively affects quality (but sometimes not substantially), prompt compression does not degrade further, and in some cases, recovers quality loss. For instance, GPT-4o retains over 90% of its baseline performance at a batch size of 4 when compression is applied, compared to a 44.6% drop without compression. We plan to release our code and trained models at https://github.com/NL2G/batchgemba to support future research in this domain.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
11+阅读 · 2018年4月8日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员